Abstract:
A circuit board includes: a substrate; a through hole formed in the substrate; and a connection terminal provided in the through hole; wherein the connection terminal includes a pedestal portion provided within the through hole and a pin which is provided at a center of the pedestal portion and extends from the pedestal portion toward a first surface of the substrate, so that a first end portion protrudes from the first surface.
Abstract:
A method of manufacturing a photoelectric composite substrate, includes: aligning and fixing an optical element having a solder terminal to an optical waveguide for forming a path of an optical signal on a printed circuit board; mounting the optical waveguide, to which the optical element is fixed, on the printed circuit board; and welding the solder terminal to an electrode of a package installed on the printed circuit board or an electrode of the printed circuit board.
Abstract:
An electronic device includes an electronic component including a plurality of terminals and a circuit board on which the electronic component is mounted. The circuit board includes a board body, a plurality of electrode pads arranged on the board body, each of the electrode pads being connected to each of the terminals by solder, a first solder resist formed on the board body and having a plurality of first openings, each of the first openings accommodating each of the electrode pads, and a second solder resist formed on the first solder resist and having a plurality of second openings, each of the second openings being larger than each of the first openings and communicating with each of the first openings.
Abstract:
A placement apparatus for an optical component includes: a suction nozzle that includes a nozzle main body having a suction surface having a suction port, an optical component being sucked to the suction port, a plurality of nozzle electrodes disposed on the suction surface, each of the nozzle electrodes being brought into contact with a corresponding one of a plurality of component electrodes provided on the optical component so as to establish electrical conduction between each of the plurality of nozzle electrodes and a corresponding one of the plurality of component electrodes.
Abstract:
A method for manufacturing an optical transmission device, includes: arranging a plurality of optical waveguides including waveguide mirrors, a transmission-side optical module and a reception-side optical module on one side of a substrate; photographing, with a photographic device, at least one waveguide mirror, and the transmission-side optical module or the reception-side optical module corresponding to the waveguide mirror, from another side of the substrate via an opening formed in the substrate; detecting optical-axis centers of the transmission-side optical module or optical-axis centers of the reception-side optical module, and central positions of reflective surfaces of the waveguide mirrors corresponding to the detected optical-axis centers, from a result of the photographing; and aligning and fixing a position relationship between the optical waveguides and the transmission-side optical module or the reception-side optical module based on a result of the detecting.