摘要:
The present invention provides various methods for forming a ground-plane SOI device which comprises at least a field effect transistor formed on a top Si-containing surface of a silicon-on-insulator (SOI) wafer; and an oxide region present beneath the field effect transistor, located in an area between source and drain regions which are formed in said SOI wafer, said oxide region is butted against shallow extensions formed in said SOI wafer, and is laterally adjacent to said source and drain regions.
摘要:
A computer program product and system for configuring J electromagnetic radiation sources (J≧2) to simultaneously irradiate a substrate. Each source has a different function of wavelength and angular distribution of emitted radiation. The substrate includes a base layer and I stacks (I≧2) thereon. Pj denotes a same source-specific normally incident energy flux on each stack from source j. For simultaneous exposure of the I stacks to radiation from the J sources, Pj is computed such that an error E being a function of |W1−S1|, |W2−S2|, |WI−SI| is about minimized with respect to Pj (j=1, . . . , J). Wi and Si respectively denote an actual and target energy flux transmitted into the substrate via stack i (i=1, . . . , I). The stacks are exposed to the radiation from the sources characterized by the computed Pj (j=1, . . . , J).
摘要:
A structure and a method for forming the same. The structure includes (a) a substrate, (b) a semiconductor fin region on top of the substrate, (c) a gate dielectric region on side walls of the semiconductor fin region, and (d) a gate electrode region on top and on side walls of the semiconductor fin region. The gate dielectric region (i) is sandwiched between and (ii) electrically insulates the gate electrode region and the semiconductor fin region. The structure further includes a first spacer region on a first side wall of the gate electrode region. A first side wall of the semiconductor fin region is exposed to a surrounding ambient. A top surface of the first spacer region is coplanar with a top surface of the gate electrode region.
摘要:
A field effect transistor and a method of fabricating the field effect transistor. The field effect transistor includes: a silicon body, a perimeter of the silicon body abutting a dielectric isolation; a source and a drain formed in the body and on opposite sides of a channel formed in the body; and a gate dielectric layer between the body and an electrically conductive gate electrode, a bottom surface of the gate dielectric layer in direct physical contact with a top surface of the body and a bottom surface the gate electrode in direct physical contact with a top surface of the gate dielectric layer, the gate electrode having a first region having a first thickness and a second region having a second thickness, the first region extending along the top surface of the gate dielectric layer over the channel region, the second thickness greater than the first thickness.
摘要:
A field effect transistor and a method of fabricating the field effect transistor. The field effect transistor includes: a silicon body, a perimeter of the silicon body abutting a dielectric isolation; a source and a drain formed in the body and on opposite sides of a channel formed in the body; and a gate dielectric layer between the body and an electrically conductive gate electrode, a bottom surface of the gate dielectric layer in direct physical contact with a top surface of the body and a bottom surface the gate electrode in direct physical contact with a top surface of the gate dielectric layer, the gate electrode having a first region having a first thickness and a second region having a second thickness, the first region extending along the top surface of the gate dielectric layer over the channel region, the second thickness greater than the first thickness.
摘要:
A method, structure and alignment procedure, for forming a finFET. The method including, defining a first fin of the finFET with a first mask and defining a second fin of the finFET with a second mask. The structure including integral first and second fins of single-crystal semiconductor material and longitudinal axes of the first and second fins aligned in the same crystal direction but offset from each other. The alignment procedure including simultaneously aligning alignment marks on a gate mask to alignment targets formed separately by a first masked used to define the first fin and a second mask used to define the second fin.
摘要:
An FET has a T-shaped gate. The FET has a halo diffusion self-aligned to the bottom portion of the T and an extension diffusion self aligned to the top portion. The halo is thereby separated from the extension implant, and this provides significant advantages. The top and bottom portions of the T-shaped gate can be formed of layers of two different materials, such as germanium and silicon. The two layers are patterned together. Then exposed edges of the bottom layer are selectively chemically reacted and the reaction products are etched away to provide the notch. In another embodiment, the gate is formed of a single gate conductor. A metal is conformally deposited along sidewalls, recess etched to expose a top portion of the sidewalls, and heated to form silicide along bottom portions. The silicide is etched to provide the notch.
摘要:
A semiconductor device is disclosed that provides a decoupling capacitance and method for the same. The semiconductor device includes a first circuit region having a first device layer over an isolation layer and a second circuit region adjacent the first circuit region having a second device layer over a well. An implant layer is implanted beneath the isolation layer in the first circuit region, which will connect to the well of the second circuit region.
摘要:
A computer program product and system for configuring J electromagnetic radiation sources (J≧2) to simultaneously irradiate a substrate. Each source has a different function of wavelength and angular distribution of emitted radiation. The substrate includes a base layer and I stacks (I≧2) thereon. Pj denotes a same source-specific normally incident energy flux on each stack from source j. For simultaneous exposure of the I stacks to radiation from the J sources, Pj is computed such that an error E being a function of |W1−S1|, |W2−S2|, |WI−SI| is about minimized with respect to Pj (j=1, . . . , J). Wi and Si respectively denote an actual and target energy flux transmitted into the substrate via stack i (i=1, . . . , I). The stacks are exposed to the radiation from the sources characterized by the computed Pj (j=1, . . . , J).
摘要:
A system for configuring and utilizing J electromagnetic radiation sources (J≧2) to serially irradiate a substrate. Each source has a different function of wavelength and angular distribution of emitted radiation. The substrate includes a base layer and I stacks (I≧2; J≧I) thereon. Pj denotes a same source-specific normally incident energy flux on each stack from source j. In each of I independent exposure steps, the I stacks are concurrently exposed to radiation from the J sources. Vi and Si respectively denote an actual and target energy flux transmitted into the substrate via stack i in exposure step i (i=1, . . . , I). t(i) and Pt(i) are computed such that: Vi is maximal through deployment of source t(i) as compared with deployment of any other source for i=1, . . . , I; and an error E being a function of |V1−S1|, |V2−S2|, . . . , |VI−SI| is about minimized with respect to Pi (i=1, . . . , I).