Abstract:
An X-ray tube assembly includes an electron beam transport tube, a beam tube protection assembly, and a control module. The electron beam transport tube includes an opening configured for passage of an electron beam, and includes an inner surface bounding the opening along a length of the electron beam transport tube. The beam tube protection assembly includes a plurality of beam protection electrode segments disposed within the opening of the electron beam transport tube and configured to protect the inner surface of the electron beam transport tube from contact with the electron beam. The control module is configured to determine a direction of the electron beam responsive to information received from the beam tube protection assembly.
Abstract:
An emitter device having an emission surface includes a plurality of ligaments configured to emit electrons in response to an applied electric field resulting from an applied electrical voltage. Further, the emitter device includes a plurality of slots configured to provide physical separation between two or more adjacently disposed ligaments of the plurality of ligaments, where one or more slots of the plurality of slots define an electrical path. Moreover, the emitter device includes a low work function layer disposed on at least a portion of a ligament of the plurality of ligaments.
Abstract:
Embodiments of the disclosure relate to electron emitters for use in conjunction with X-ray emitting devices. In certain embodiments the emitter includes features that prevent, limit, or control deflection of the electron emitter at operating temperatures. In this manner, the electron emitter may be kept substantially flat or at a desired curvature during operation.
Abstract:
An X-ray tube assembly includes an electron beam transport tube, a beam tube protection assembly, and a control module. The electron beam transport tube includes an opening configured for passage of an electron beam, and includes an inner surface bounding the opening along a length of the electron beam transport tube. The beam tube protection assembly includes a plurality of beam protection electrode segments disposed within the opening of the electron beam transport tube and configured to protect the inner surface of the electron beam transport tube from contact with the electron beam. The control module is configured to determine a direction of the electron beam responsive to information received from the beam tube protection assembly.
Abstract:
An x-ray tube casing is provided which includes a central frame having internal passages to supply a cooling fluid directly to the casing without the need for an external dedicated heat exchanger. The cooling fluid flowing through the passages in the easing can thermally contact the dielectric coolant within the casing to cool the tube coolant during operation of the x-ray tube. The casing is formed in an additive manufacturing process to allow for tight tolerances with regard to the structure for the casing and the internal passages to reduce the size and weight of the casing. The casing can additionally be formed from a metal matrix including a metal with high x-ray attenuation and a filler metal. The metal matrix eliminates the need for a separate x-ray attenuation layer within the casing, further reducing the size, number of parts and assembly complexity of the casing.
Abstract:
An electron collector for an electromagnetic ray generating device is provided. The electron collector includes a body having a surface configured to intercept backscattered electrons produced by an electron beam striking an anode to generate electromagnetic rays. The body is operative to absorb the backscattered electrons and is formed by particles of a first material disposed within a matrix of a second material.
Abstract:
An x-ray tube casing is provided which includes a central frame having internal passages to supply a cooling fluid directly to the casing without the need for an external dedicated heat exchanger. The cooling fluid flowing through the passages in the easing can thermally contact the dielectric coolant within the casing to cool the tube coolant during operation of the x-ray tube. The casing is formed in an additive manufacturing process to allow for tight tolerances with regard to the structure for the casing and the internal passages to reduce the size and weight of the casing. The casing can additionally be formed from a metal matrix including a metal with high x-ray attenuation and a filler metal. The metal matrix eliminates the need for a separate x-ray attenuation layer within the casing, further reducing the size, number of parts and assembly complexity of the casing.
Abstract:
An emitter device having an emission surface includes a plurality of ligaments configured to emit electrons in response to an applied electric field resulting from an applied electrical voltage. Further, the emitter device includes a plurality of slots configured to provide physical separation between two or more adjacently disposed ligaments of the plurality of ligaments, where one or more slots of the plurality of slots define an electrical path. Moreover, the emitter device includes a low work function layer disposed on at least a portion of a ligament of the plurality of ligaments.
Abstract:
Embodiments of the disclosure relate to electron emitters for use in conjunction with X-ray emitting devices. In certain embodiments the emitter includes features that prevent, limit, or control deflection of the electron emitter at operating temperatures. In this manner, the electron emitter may be kept substantially flat or at a desired curvature during operation.