Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a fin structure overlying a semiconductor substrate. The fin structure defines a fin axis extending in a longitudinal direction perpendicular to a lateral direction and has two fin sidewalls parallel to the fin axis. The method includes forming gate structures overlying the fin structure and transverse to the fin axis. Further, the method includes growing an epitaxial material on the fin structure and confining growth of the epitaxial material in the lateral direction.
Abstract:
Etching a feature of a structure by an etch system is facilitated by varying supply of radio frequency (RF) power pulses to the etch system. The varying provides at least one RF power pulse, of the supplied RF power pulses, that deviates from one or more other RF power pulses, of the supplied RF power pulses, by at least one characteristic.
Abstract:
Semiconductor structures and fabrication methods are provided which includes, for instance, providing a gate structure over a semiconductor substrate, the gate structure including multiple conformal gate layers and a gate material disposed within the multiple conformal gate layers; recessing a portion of the multiple conformal gate layers below an upper surface of the gate structure, where upper surfaces of recessed, multiple conformal gate layers are coplanar; and removing a portion of the gate material to facilitate an upper surface of a remaining portion of the gate material to be coplanar with an upper surface of the recessed, multiple conformal gate layers.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a fin structure overlying a semiconductor substrate. The fin structure defines a fin axis extending in a longitudinal direction perpendicular to a lateral direction and has two fin sidewalls parallel to the fin axis. The method includes forming gate structures overlying the fin structure and transverse to the fin axis. Further, the method includes growing an epitaxial material on the fin structure and confining growth of the epitaxial material in the lateral direction.
Abstract:
Integrated circuits having replacement metal gates with improved threshold voltage performance and methods for fabricating such integrated circuits are provided. A method includes providing a dielectric layer overlying a semiconductor substrate. The dielectric layer has a first and a second trench. A gate dielectric layer is formed in the first and second trench. A first barrier layer is formed overlying the gate dielectric layer. A work function material layer is formed within the trenches. The work function material layer and the first barrier layer are recessed in the first and second trench. The work function material layer and the first barrier layer form a chamfered surface. The gate dielectric layer is recessed in the first and second trench. A conductive gate electrode material is deposited such that it fills the first and second trench. The conductive gate electrode material is recessed in the first and second trench.
Abstract:
Mask pattern formation is facilitated by: providing a mask structure including at least one sacrificial spacing structure disposed above a substrate structure; disposing a spacer layer conformally over the mask structure; selectively removing the spacer layer, leaving, at least in part, sidewall spacers along sidewalls of the at least one sacrificial spacing structure, and providing at least one additional sacrificial spacer over the substrate structure, one additional sacrificial spacer of the at least one additional sacrificial spacer being disposed in set spaced relation to the at least one sacrificial spacing structure; and removing the at least one sacrificial spacing structure, leaving the sidewall spacers and the at least one additional sacrificial spacer over the substrate structure as part of a mask pattern.
Abstract:
Methods for fabricating integrated circuits with improved patterning schemes are provided. In an embodiment, a method for fabricating an integrated circuit includes depositing an interlayer dielectric material overlying a semiconductor substrate. Further, the method includes forming a patterned hard mask overlying the interlayer dielectric material. Also, the method forms an organic planarization layer overlying the patterned hard mask and contacting portions of the interlayer dielectric material. The method patterns the organic planarization layer using an extreme ultraviolet (EUV) lithography process. The method also includes etching the interlayer dielectric material using the patterned hard mask and organic planarization layer as a mask to form vias in the interlayer dielectric material.
Abstract:
Integrated circuits having replacement metal gates with improved threshold voltage performance and methods for fabricating such integrated circuits are provided. A method includes providing a dielectric layer overlying a semiconductor substrate. The dielectric layer has a first and a second trench. A gate dielectric layer is formed in the first and second trench. A first barrier layer is formed overlying the gate dielectric layer. A work function material layer is formed within the trenches. The work function material layer and the first barrier layer are recessed in the first and second trench. The work function material layer and the first barrier layer form a beveled surface. The gate dielectric layer is recessed in the first and second trench. A conductive gate electrode material is deposited such that it fills the first and second trench. The conductive gate electrode material is recessed in the first and second trench.