Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a substantially periodic array of a plurality of topographical features including a plurality of etch resistant topographical features and at least one graphoepitaxy feature. The plurality of etch resistant topographical features define a plurality of etch resistant confinement wells and the at least one graphoepitaxy feature defines a graphoepitaxy confinement well that has a different size and/or shape than the etch resistant confinement wells. A block copolymer is deposited into the confinement wells. The block copolymer is phase separated into an etchable phase and an etch resistant phase. The etch resistant topographical features direct the etch resistant phase to form an etch resistant plug in each of the etch resistant confinement wells.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes generating a photomask for forming a DSA directing pattern overlying a semiconductor substrate. The DSA directing pattern is configured to guide a self-assembly material deposited thereon that undergoes directed self-assembly (DSA) to form a DSA pattern. Generating the photomask includes identifying placement of DSA target patterns in a design layout. The DSA target patterns are grouped into groups including a first group and a first group boundary is defined around the first group. The method further includes determining if a neighboring DSA target pattern to the first group boundary is at least a predetermined minimal keep-away distance from an adjacent DSA target pattern that is within the first group boundary. The method also includes determining if the DSA target patterns in the first group are DSA compatible. An output mask pattern is generated using the first group boundary.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming assisting etch resistant fill topographical features that overlie a semiconductor substrate and that define an assisting etch resistant fill confinement well using a photomask. The photomask defines an assisting lithographically-printable mask feature. A block copolymer is deposited into the assisting etch resistant fill confinement well. The block copolymer is phase separated into an etchable phase and an etch resistant phase. The assisting etch resistant fill topographical features direct the etch resistant phase to form an etch resistant plug in the assisting etch resistant fill confinement well.
Abstract:
A method of manufacturing an optical lithography mask includes providing a patterned layout design comprising a plurality of polygons, correcting the patterned layout design using optical proximity correction (OPC) by adjusting widths and lengths of one or more of the plurality of polygons, to generate a corrected patterned layout design, converting the corrected patterned layout design into a mask writer-compatible format, to generate a mask writer-compatible layout design comprising the plurality of polygons, and biasing each polygon in the plurality of polygons with a bias that accounts for large-scale density values of the patterned layout design, to generate a biased, mask writer-compatible layout design.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a substantially periodic array of a plurality of topographical features including a plurality of etch resistant topographical features and at least one graphoepitaxy feature. The plurality of etch resistant topographical features define a plurality of etch resistant confinement wells and the at least one graphoepitaxy feature defines a graphoepitaxy confinement well that has a different size and/or shape than the etch resistant confinement wells. A block copolymer is deposited into the confinement wells. The block copolymer is phase separated into an etchable phase and an etch resistant phase. The etch resistant topographical features direct the etch resistant phase to form an etch resistant plug in each of the etch resistant confinement wells.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes generating a photomask for forming a DSA directing pattern overlying a semiconductor substrate. The DSA directing pattern is configured to guide a self-assembly material deposited thereon that undergoes directed self-assembly (DSA) to form a DSA pattern. Generating the photomask includes inputting DSA target patterns. The DSA target patterns are grouped into groups including a first group and a group boundary is defined around the first group as an initial OPC mask pattern. A circle target is generated around each of the DSA target patterns in the first group to define a merged circle target boundary. The initial OPC mask pattern is adjusted and/or iteratively updated using the merged circle target boundary to generate an output final OPC mask pattern.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes generating a photomask for forming a DSA directing pattern overlying a semiconductor substrate. The DSA directing pattern is configured to guide a self-assembly material deposited thereon that undergoes directed self-assembly (DSA) to form a DSA pattern. Generating the photomask includes identifying placement of DSA target patterns in a design layout. The DSA target patterns are grouped into groups including a first group and a first group boundary is defined around the first group. The method further includes determining if a neighboring DSA target pattern to the first group boundary is at least a predetermined minimal keep-away distance from an adjacent DSA target pattern that is within the first group boundary. The method also includes determining if the DSA target patterns in the first group are DSA compatible. An output mask pattern is generated using the first group boundary.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming assisting etch resistant fill topographical features that overlie a semiconductor substrate and that define an assisting etch resistant fill confinement well using a photomask. The photomask defines an assisting lithographically-printable mask feature. A block copolymer is deposited into the assisting etch resistant fill confinement well. The block copolymer is phase separated into an etchable phase and an etch resistant phase. The assisting etch resistant fill topographical features direct the etch resistant phase to form an etch resistant plug in the assisting etch resistant fill confinement well.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes generating a photomask for forming a DSA directing pattern overlying a semiconductor substrate. The DSA directing pattern is configured to guide a self-assembly material deposited thereon that undergoes directed self-assembly (DSA) to form a DSA pattern. Generating the photomask includes inputting DSA target patterns. The DSA target patterns are grouped into groups including a first group and a group boundary is defined around the first group as an initial OPC mask pattern. A circle target is generated around each of the DSA target patterns in the first group to define a merged circle target boundary. The initial OPC mask pattern is adjusted and/or iteratively updated using the merged circle target boundary to generate an output final OPC mask pattern.
Abstract:
A method of manufacturing an optical lithography mask includes providing a patterned layout design comprising a plurality of polygons, correcting the patterned layout design using optical proximity correction (OPC) by adjusting widths and lengths of one or more of the plurality of polygons, to generate a corrected patterned layout design, converting the corrected patterned layout design into a mask writer-compatible format, to generate a mask writer-compatible layout design comprising the plurality of polygons, and biasing each polygon in the plurality of polygons with a bias that accounts for large-scale density values of the patterned layout design, to generate a biased, mask writer-compatible layout design.