Abstract:
Solder bumps are provided on round wafers through the use of injection molded solder. Copper pillars or ball limiting metallurgy are formed over I/O pads within the channels of a patterned mask layer. Solder is injected over the pillars or BLM, filling the channels. Molten solder can be injected in cavities formed in round wafers without leakage using a carrier assembly that accommodates wafers that have been previously subjected to mask layer deposition and patterning. One such carrier assembly includes an elastomeric body portion having a round recess, the walls of the recess forming a tight seal with the round wafer. Other carrier assemblies employ adhesives applied around the peripheral edges of the wafers to ensure sealing between the carrier assemblies and wafers.
Abstract:
Solder bumps are provided on round wafers through the use of injection molded solder. Copper pillars or ball limiting metallurgy are formed over I/O pads within the channels of a patterned mask layer. Solder is injected over the pillars or BLM, filling the channels. Molten solder can be injected in cavities formed in round wafers without leakage using a carrier assembly that accommodates wafers that have been previously subjected to mask layer deposition and patterning. One such carrier assembly includes an elastomeric body portion having a round recess, the walls of the recess forming a tight seal with the round wafer. Other carrier assemblies employ adhesives applied around the peripheral edges of the wafers to ensure sealing between the carrier assemblies and wafers.
Abstract:
Multiple injections of molten solder are employed to form double solder bumps having outer layers that melt at lower temperatures than the inner portions thereof. During a flip chip assembly process, the reflow temperature is above the melting temperature of the outer layers and below the melting temperature of the inner portions of the solder bumps. As the inner portions of the solder bumps do not collapse during reflow, a flip chip assembly can be made at relatively low temperatures and have a high stand-off height. A structure having double solder bumps facilitates flip chip assembly.