Abstract:
At least one method, apparatus and system disclosed involves an antenna diode design for a semiconductor device. A first common diode operatively coupled to a ground node and to a p-well layer serving as an isolated p-well that is formed over a deep n-well that is adjacent to an n-well in a semiconductor device is provided. A first antenna diode formed on the isolated p-well operatively coupled to the p-well layer and operatively coupled to a first signal line of the semiconductor device is provided for discharging accumulated charges on the first signal line. A second antenna diode formed on the isolated p-well operatively coupled to the p-well layer and operatively coupled to a second signal line of semiconductor device is provided for discharging accumulated charges on the second signal line.
Abstract:
Hierarchical layout versus schematic comparison with extraneous device elimination is provided. This includes obtaining a hierarchical layout netlist for a circuit design, the hierarchical layout netlist grouping arrayed devices of the circuit design into blocks repeated at a top level of a hierarchy of the hierarchical layout netlist. A modified hierarchical layout netlist defining active devices and connections thereof to top level pads of the circuit design is generated, in which extraneous devices are selectively removed from the obtained hierarchical layout netlist. The modified hierarchical layout netlist is verified against an input schematic netlist defining active devices of the circuit design and connections thereof to pads of the circuit design.
Abstract:
A method of forming contacts includes forming a plurality of transistor devices separated by shallow trench insulator regions, the transistor devices each comprising a semiconductor substrate, a buried insulator layer on the semiconductor bulk substrate, a semiconductor layer on the buried insulator layer, a high-k metal gate stack on the semiconductor layer and a gate electrode above the high-k metal gate stack, raised source/drain regions on the semiconductor layer, and a silicide contact layer above the raised source/drain regions and the gate electrode, providing an interlayer dielectric stack on the silicide contact layer and planarizing the interlayer dielectric stack, patterning a plurality of contacts through the interlayer dielectric stack onto the raised source/drain regions, and, for at least some of the contacts, patterning laterally extended contact regions above the contacts, the laterally extended contact regions extending over shallow trench insulator regions neighboring the corresponding raised source/drain regions.
Abstract:
At least one method, apparatus and system disclosed involves providing a design for manufacturing a semiconductor device. An operation modeling of a semiconductor device circuit design is performed. At least one transistor is identified for providing at least one of a first voltage for forward biasing the transistor or a second voltage for reverse biasing the transistor. Selectively providing a delay for adjusting a timing associated with the transistor based upon identifying the at least one transistor for providing the at least one of a first voltage for forward biasing the transistor or a second voltage for reverse biasing.
Abstract:
An electronic fuse includes a body, an anode coupled to the body, and a cathode coupled to the body. Each of the anode and the cathode includes a first line contacting the body. The first line is discontinuous along its length and includes a first portion and a second portion with a space therebetween. A second line is disposed above the first line and a plurality of vias couple the first and second lines. The first portion of the first line is coupled to a first subset of the plurality of vias and the second portion of the first line is coupled to a second subset of the vias.
Abstract:
An integrated circuit product is disclosed that includes a resistor body and an e-fuse body positioned on a contact level dielectric material, wherein the resistor body and the e-fuse body are made of the same conductive material, a first plurality of conductive contact structures are coupled to the resistor body, conductive anode and cathode structures are conductively coupled to the e-fuse body, wherein the first plurality of conductive contact structures and the conductive anode and cathode structures are made of the same materials.
Abstract:
Semiconductor fuses with epitaxial fuse link regions and fabrication methods thereof are presented. The methods include: fabricating a semiconductor fuse including an anode region and a cathode region electrically linked by a fuse link region, and the fabricating including: forming, epitaxially, the fuse link region between the anode region and the cathode region, wherein the fuse link region facilitates the semiconductor fuse open circuiting from applying a programming current between the anode region and the cathode region thereof. The semiconductor fuses include: an anode region and a cathode region electrically linked by a fuse link region, wherein the fuse link region includes an epitaxial structure and facilitates the semiconductor fuse open circuiting from applying a programming current between the anode region and the cathode region, wherein the epitaxial structure is in at least partial crystallographic alignment with the anode region and the cathode region of the semiconductor fuse.
Abstract:
An integrated circuit product is disclosed that includes a resistor body and an e-fuse body positioned on a contact level dielectric material, wherein the resistor body and the e-fuse body are made of the same conductive material, a first plurality of conductive contact structures are coupled to the resistor body, conductive anode and cathode structures are conductively coupled to the e-fuse body, wherein the first plurality of conductive contact structures and the conductive anode and cathode structures are made of the same materials.
Abstract:
One illustrative e-fuse device disclosed herein includes first and second conductive structures, a first electrically conductive heat cage element that is conductively coupled to the first conductive structure, wherein the first heat cage element is adapted to carry an electrical current, a second electrically conductive heat cage element that is conductively coupled to the second conductive structure, wherein the second heat cage element is adapted to carry the electrical current, and a programmable, electrically conductive e-fuse element that is conductively coupled to each of the first and second electrically conductive heat cage elements and adapted to carry the electrical current, wherein the e-fuse element is positioned adjacent to each of the first and second electrically conductive heat cage elements.
Abstract:
Methods of fabricating an integrated circuit with a fin-based fuse, and the resulting integrated circuit with a fin-based fuse are provided. In the method, a fin is created from a layer of semiconductor material and has a first end and a second end. The method provides for forming a conductive path on the fin from its first end to its second end. The conductive path is electrically connected to a programming device that is capable of selectively directing a programming current through the conductive path to cause a structural change in the conductive path to increase resistance across the conductive path.