Abstract:
Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
Abstract:
The invention provides an improved stem-loop target capture oligomer and methods of use. Such a target capture oligomer has a target-binding segment forming a loop flanked by stem segments forming a stem. The stem segments are of unequal length. Such probes show little or no binding to immobilized probes in the absence of a target nucleic acid but offer good target sensitivity. The probes are particularly useful in multiplex methods of detection in which multiple target capture oligomers are present for detecting of multiple target nucleic acids (for example, detecting multiple polymorphic forms of a target gene).
Abstract:
Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
Abstract:
Hybridization assay detection probes targeted to HPV Type 16 nucleic acid sequences which are particularly useful to aid in detecting HPV type 16 are described. The oligonucleotides can aid in detecting HPV Type 16 by acting singly or as part of a detection probe mixture. Compositions, reaction mixtures and methods of use are provided.
Abstract:
The invention provides an improved stem-loop target capture oligomer and methods of use. Such a target capture oligomer has a target-binding segment forming a loop flanked by stem segments forming a stem. The stem segments are of unequal length. Such probes show little or no binding to immobilized probes in the absence of a target nucleic acid but offer good target sensitivity. The probes are particularly useful in multiplex methods of detection in which multiple target capture oligomers are present for detecting of multiple target nucleic acids (for example, detecting multiple polymorphic forms of a target gene).
Abstract:
Nucleic acid oligomers specific for human parvovirus B19 genomic DNA are disclosed. An assay for amplifying and detecting human parvovirus B19 nucleic acid in biological specimens is disclosed. Compositions for detecting the presence of parvovirus B19 genomic DNA in human biological specimens are disclosed.
Abstract:
The invention provides methods of determining a consensus sequence from multiple raw sequencing reads of a nucleic acid target. The nucleic acid target includes an anchor segment of known sequence and an adjacent segment of unknown sequence. The anchor segment provides a means to assess the quality of a raw target sequencing read. Raw target sequencing reads meeting or exceeding a threshold are assigned to an accepted class. The consensus sequence of the adjacent segment can be determined from raw target sequencing reads in the accepted class. Successive polling steps determine successive consensus nucleobases in a nascent sequence of the adjacent segment. Raw target sequencing reads can be removed or reintroduced from the accepted class depending on their correspondence to the most recently determined consensus nucleobase and/or the nascent sequence.
Abstract:
The invention provides an improved stem-loop target capture oligomer and methods of use. Such a target capture oligomer has a target-binding segment forming a loop flanked by stem segments forming a stem. The stem segments are of unequal length. Such probes show little or no binding to immobilized probes in the absence of a target nucleic acid but offer good target sensitivity. The probes are particularly useful in multiplex methods of detection in which multiple target capture oligomers are present for detecting of multiple target nucleic acids (for example, detecting multiple polymorphic forms of a target gene).
Abstract:
Nucleic acid oligomeric sequences and in vitro nucleic acid amplification and detection methods for detecting the presence of HAV RNA sequences in samples are disclosed. Kits comprising nucleic acid oligomers for amplifying and detecting HAV nucleic acid sequences are disclosed.
Abstract:
Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.