Abstract:
This invention relates to oligonucleotides comprising a molecular switch which may exist in an “open” or “closed” position. The molecular switch portion of the probe is particularly sensitive to the identity of sequences complementary to the molecular switch. Oligonucleotides containing a molecular switch are applicable to all kinds of hybridization processes. Due to the sensitivity of the switch domain of the oligonucleotide, probes containing a molecular switch are particularly useful in the identification of single point mismatches. More specifically, a portion, but not all, of the oligonucleotide becomes unbound from a mismatched target. The invention further relates to methods of using said oligonucleotides for research reagents, and clinical diagnostics. An exemplary oligonucleotide comprises a first hybridizable domain, a second bridging block domain, and a third binding domain.
Abstract:
Improved methods for use in nucleic acid amplification, including multiplex amplification, where the amplification is carried out in two or more distinct phases are disclosed. The first phase amplification reaction preferably lacks one or more components required for exponential amplification. The lacking component is subsequently provided in a second, third or further phase(s) of amplification, resulting in a rapid exponential amplification reaction. The multiphase protocol results in faster and more sensitive detection and lower variability at low analyte concentrations. Compositions for carrying out the claimed methods are also disclosed.
Abstract:
Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
Abstract:
Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
Abstract:
Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
Abstract:
Improved methods for use in nucleic acid amplification, including multiplex amplification, where the amplification is carried out in two or more distinct phases are disclosed. The first phase amplification reaction preferably lacks one or more components required for exponential amplification. The lacking component is subsequently provided in a second, third or further phase(s) of amplification, resulting in a rapid exponential amplification reaction. The multiphase protocol results in faster and more sensitive detection and lower variability at low analyte concentrations. Compositions for carrying out the claimed methods are also disclosed.
Abstract:
Improved methods for use in nucleic acid amplification, including multiplex amplification, where the amplification is carried out in two or more distinct phases are disclosed. The first phase amplification reaction preferably lacks one or more components required for exponential amplification. The lacking component is subsequently provided in a second, third or further phase(s) of amplification, resulting in a rapid exponential amplification reaction. The multiphase protocol results in faster and more sensitive detection and lower variability at low analyte concentrations. Compositions for carrying out the claimed methods are also disclosed.
Abstract:
Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.