Abstract:
An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting in front of a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. The working electrode can have at least one dimension less than 25 micrometers. The reference electrode can have an area at least five times greater than an area of the working electrode. A portion of the polymeric material can surround the working electrode and the reference electrode such that an electrical current conveyed between the working electrode and the reference electrode is passed through the at least partially surrounding portion of the transparent polymeric material.
Abstract:
Apparatus, systems and methods employing contact lenses having an electrochemical sensor to detect ethanol concentration of a wearer of the contact lens are provided. In some aspects, a contact lens includes a substrate that forms at least part of a body of the contact lens and an electrochemical sensor, disposed on or within the substrate, that detects information related to concentration of alcohol present in blood of a wearer of the contact lens.
Abstract:
An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. The working electrode can have at least one dimension less than 25 micrometers. The reference electrode can have an area at least five times greater than an area of the working electrode. A portion of the polymeric material can surround the working electrode and the reference electrode such that an electrical current conveyed between the working electrode and the reference electrode is passed through the at least partially surrounding portion of the transparent polymeric material.
Abstract:
An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. The working electrode can have a first side edge and a second side edge. The reference electrode can be situated such that at least a portion of the first and second side edges of the working electrode are adjacent respective sections of the reference electrode.
Abstract:
A body-mountable pyruvate sensing device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent localized near the working electrode that selectively reacts with pyruvate. Application of a voltage between the working electrode and the reference electrode causes a current related to a concentration of pyruvate in a fluid to which the electrochemical sensor is exposed; the current is measured by the body-mountable device and wirelessly communicated.
Abstract:
A method involving forming a sacrificial layer on a working substrate; forming a first bio-compatible layer on the sacrificial layer such that the first bio-compatible layer adheres to the sacrificial layer, wherein the first bio-compatible layer defines a first side of a bio-compatible device; forming a conductive pattern on the first bio-compatible layer, the conductive pattern comprising a metal; mounting an electronic component to the conductive pattern; forming a self-assembled monolayer (SAM) on the conductive pattern by contacting the conductive pattern with a functionalized sulfur compound or a functionalized selenium compound; forming an adhesion layer on the SAM by contacting the SAM with an adhesion promoter; forming a second bio-compatible layer over the first bio-compatible layer, the electronic component, and the conductive pattern having the adhesion layer, wherein the second bio-compatible layer defines a second side of the bio-compatible device; and removing the sacrificial layer to release the bio-compatible device from the working substrate. The first bio-compatible layer defines a first side of a bio-compatible device. The second bio-compatible layer defines a second side of the bio-compatible device.
Abstract:
A body-mountable urea sensing device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent localized near the working electrode that selectively reacts with urea. A potentiometric voltage between the working electrode and the reference electrode is related to a concentration of urea in a fluid to which the electrochemical sensor is exposed; the voltage is measured by the body-mountable device and wirelessly communicated.
Abstract:
An analyte sensor for the continuous or semi-continuous monitoring of physiological parameters and a method for making the analyte sensor are disclosed. In one aspect, the analyte sensor includes an electrode, a sensing layer in contact with a surface of the electrode, and a protective membrane. The sensing layer is a crosslinked, hydrophilic copolymer including poly(alkylene oxide) and poly(vinyl pyridine), and an analyte sensing component is immobilized within the crosslinked, hydrophilic copolymer. The protective membrane is a crosslinked, hydrophilic copolymer including alkylene oxide, vinyl pyridine and styrene units. The method involves the formation of a sensing layer on a surface of an electrode, followed by the formation of a protective membrane on a surface of the sensing layer.
Abstract:
An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. A calibration-solution measurement is obtained while the eye-mountable device is exposed to a calibration solution. A calibration value is determined based on at least the calibration-solution measurement and an analyte concentration of the calibration solution. A tear-film measurement is obtained while the eye-mountable device is mounted to an eye so as to be exposed to tear film. The analyte concentration of the tear film is determined based on at least the tear-film measurement and the calibration value.
Abstract:
An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. The working electrode can have a first side edge and a second side edge. The reference electrode can be situated such that at least a portion of the first and second side edges of the working electrode are adjacent respective sections of the reference electrode.