Abstract:
A liquid crystal display, applying to the first electrode, a voltage higher and a voltage lower at different timings, detecting a current flowing through the second electrode, designating, as a reference value, the current flowing through the second electrode when the voltage maintained in the liquid crystal element is reset, specifying a first current which is obtained by excluding a charging current due to application of a related higher voltage from currents flowing through the second electrode after the higher voltage is applied to the first electrode, and a second current which is obtained by excluding a charging current due to application of a related lower voltage from currents flowing through the second electrode after the lower voltage is applied to the first electrode, and comparing the first current with the second current, and controlling the first current and the second current based on the comparison result.
Abstract:
A method of driving an electro-optical device having scanning lines, data lines, a switching transistor and a pixel electrode. The device also has an electro-optical layer interposed between the pixel electrode and a counter electrode. The method includes: supplying a data signal alternate between a positive and a negative voltage to the pixel electrode. The positive voltage has a potential greater than a counter electrode potential applied to the counter electrode and the negative voltage is a potential lower than the counter electrode potential; setting the counter electrode potential to reduce a flicker; supplying a first voltage that is either the positive or negative voltage to the pixel electrode in a first period; the other voltage to the pixel electrode in a second period. A ratio of the first period to the second period is variable.
Abstract:
An electro-optic device including: a plurality of pixels disposed corresponding to a plurality of colors; and a drive circuit adapted to drive the pixels, wherein the drive circuit drives the pixels based on a drive voltage set for each of the colors in accordance with a mixture ratio between the colors, and a drive pattern provided in accordance with the drive voltage and adapted to designate one of switching ON and OFF of the pixels at each of sub-fields constituting a frame in accordance with a grayscale level, and the drive voltages are set so that a voltage range of the drive voltage is different between the pixel corresponding to at least one of the colors and the pixel corresponding to another of the colors, the colors having respective proportions of mixture different from each other.
Abstract:
An electrophoretic display apparatus, electronic device, and driving method for an electrophoretic display apparatus are capable of significantly increasing the number of tones that can be expressed in a single frame period. The electrophoretic display apparatus divides at least part of a frame period into multiple subfield periods and controls the light transmission of an electro-optical layer by selecting, on a subfield period-by-subfield period basis, an on or off voltage as the driving voltage to apply between a pixel electrode and an opposing electrode to display multiple tones. A driving circuit of the electrophoretic display apparatus determines, in accordance with the tone to be displayed, the ratio between the application periods of the on and off voltages during the frame period, and the arrangement of the on and off voltages. The absolute values of the positive-polarity and negative-polarity voltages are different from each other.
Abstract:
An image display apparatus includes a light-source driving circuit that drives a light source to cyclically change brightness. A control unit controls a pixel to turn on and off over a plurality of subfields in a field so that transmittance or reflectance in the pixel over the plurality of subfields in the field corresponds to a gray level specified for the pixel. The control unit also arranges the plurality of subfields such that two or more gray-level defining subfields maintain a predetermined relationship with respect to the cyclical change in brightness of the light source caused by drive of a light-source driving circuit.
Abstract:
A cooling device that cools a heat generator generating heat in response to application or a signal based on a predetermined signal via a cooling fluid includes a cooling fluid cooling section that cools the cooling fluid, a control section that controls the cooling fluid cooling section in accordance with a signal based on the predetermined signal, and a signal processing section that supplies the heat generator with the signal based on the predetermined signal relatively late, and supplies the control section with the signal based on the predetermined signal relatively early.
Abstract:
Light having a color component that corresponds to a present field is irradiated on a plurality of pixels for a time duration that starts during the scan period of the present field and that ends during the scan period of a next field that is subsequent to the present field. The light is irradiates so that the light having the color component that corresponds to the present field is not mixed with light having a color component that corresponds to a previous field that is previous to the present field and with light having a color component that corresponds to the next field
Abstract:
An electro-optical device includes a liquid crystal drive unit that divides on a temporal axis one field into subfields and that, during the subfields, applies either an on-voltage or an off-voltage to picture elements of a liquid crystal display in accordance with gradation of the picture elements during the one field. A light source control unit sequentially switches the three light sources, and switches at least two of the three light sources at a switching period that is shorter than a time duration required to exhibit, in the picture elements during the one field, gradation of each color corresponding to each of the at least two of the three light sources.
Abstract:
An electro-optic device has electro-optic elements; a storage units storing a first table including pairs of a gray-scale value and an a-bit sub-field code and a second table including pairs of a gray-scale value and a b-bit (b>a) sub-field code; a converting unit converting the gray-scale value of an object pixel into the sub-field code using the second table when a difference in gray-scale value between a first image and a second image is less than a threshold value, while converting the gray-scale value of the object pixel into the sub-field code using the first table when the difference in gray-scale value between the first image and the second image is the threshold value or more; and a driving unit supplying a signal corresponding to the sub-field code converted by the converting unit to drive the electro-optic elements.
Abstract:
The hybrid substrate of the present invention comprises a ceramic substrate assembly composed of a plurality of ceramic substrates, insulating resin layers disposed respectively on both surfaces of the ceramic substrate assembly such that they are opposed to each other, each of the insulating resin layers being made at least of a reinforcing material and a resin, and a metal layer disposed on each of the insulating resin layers. In particular, the hybrid substrate of the present invention comprises the plurality of ceramic substrates which are in the form of a tile arrangement along the same plane positioned between the opposed insulating resin layers.