摘要:
Systems and methods for providing multiple connections or interfaces at the same time may be disclosed herein. For example, in an embodiment, a first RRC connection may be established between a wireless transmit and receive unit (WTRU) or user equipment (UE) and a network node such as an eNB and a second RRC connection may be established between the WTRU or UE and the network node such as the eNB or another network node such as another eNB. The first RRC connection and the second RRC connections may then be maintained in parallel (e.g. at the same time).
摘要:
Techniques for supporting utilization of femtocell service capabilities for services are disclosed. A network device may be configured to implement a femto services gateway. The femto services gateway may reside in a femtocell and provide application programming interfaces (APIs) to services to enable applications implementing the services to make use of functionalities of femtocell service capabilities. The APIs may be a subset of or an extended set of Open Service Access Parlay or Parlay-X APIs. The services may be either femtocell-hosted, mobile network operator core network-hosted, or Internet-hosted. The femtocell service capabilities may include a framework service capability feature (SCF), a call control SCF, a user interaction SCF, a mobility SCF, a terminal capability SCF, a data session control SCF, a connectivity manager SCF, an account management SCF, a charging management SCF, a policy management SCF, a presence and availability management SCF, or a multimedia messaging SCF.
摘要:
Methods, apparatus and systems may support distributed and dynamic mobility management features, including for nodes, functions and interfaces. A distributed gateway (D-GW), which may be a logical entity, may implement functionality of a PDN gateway (PGW) along with additional functionality that may support distributed mobility management (DMM). Additionally, methods, apparatus, and systems may support detecting and discovering capabilities that may be used to support dynamic IP mobility features on mobile node and networks.
摘要:
A method and apparatus for offloading backhaul traffic are disclosed. A first base station may detect a condition triggering backhaul traffic offloading for a wireless transmit/receive unit (WTRU). The first base station may establish a wireless connection with a second base station, and offload at least one bearer of the WTRU onto the second base station via the wireless connection. The first base station may be a macro-cell base station and the second base station may be a femto-cell base station having a wired connection to Internet and a mobile operator core network. The first or second base station may include a relay functionality and act as a relay between the WTRU and the other base station. The backhaul link may be established using a Uu, Un, X2 interface or any other interface over a licensed or license-exempt frequency, a TV white space frequency, etc.
摘要:
A method and apparatus for maintaining a connection between a wireless transmit/receive unit (WTRU) and a blanket wireless local area network (BWLAN) are described. An inter-working function (IWF) entity in a given network access point (NAP) of the BWLAN maintains lists of WTRUs in respective states. Furthermore, the given NAP maintains a list of neighbor NAPs, and operates in accordance with a selected WTRU mobility protocol. The states may include a “not aware” (NA) state in which the given NAP is actually not aware of a particular WTRU, an “active transmit” (AT) state in which the given NAP is actively transmitting to a particular WTRU, and a “neighbor range” (NR) state for WTRUs indicated in an update report from neighbor (URN) message that the given NAP was not aware of. The WTRU mobility protocol may be a push mobility protocol or a poll mobility protocol.
摘要:
Systems, methods, and apparatus embodiments are described herein for controlling policy in integrated small cell and Wi-Fi networks (ISWNs). It is recognized herein that multiple actors within an ISWN may have needs or preferences that conflict with each other, and that the best way of reconciling those conflicting needs is not always to simply give one actor preference over another. As described herein, optimum management decisions may be dynamically based on current network conditions and preferences of multiple actors.
摘要:
A system is disclosed for providing inter-system mobility in integrated LTE and WiFi systems. A control plane interface, referred to as the S1a-C interface, is defined between a trusted WLAN access network (TWAN) and a mobility management entity (MME) comprised in an LTE wireless access network. A user plane interface, referred to as the S1a-U interface, is defined between the TWAN and a server gateway (SGW) in the LTE wireless access network. The MME operates as a common control plane entity for both LTE and TWAN access, while the SGW operates as a user plane gateway for both LTE and TWAN. The integrated MME and SGW allow for user equipment (UE) to access the capabilities of a packet data network (PDN) through either the LTE access network or TWAN.
摘要:
Control and/or management plane interactions may be implemented between one or more wireless backhaul links and respective associated access and/or core networks. The control and/or management plane interactions may be implemented in accordance with self-optimization functionalities and may be implemented to perform radio resource management (RRM) for the one or more wireless backhaul links. Packet-based synchronization and/or delay measurement techniques may be implemented to determine estimated values for wireless backhaul induced delay. The delay estimation information may be used by one or more devices in a wireless communications network, such as a packet data network gateway (PGW), a small cell gateway (SC GW), or an access point (AP), such as a small cell access point (SC AP). Delay estimation for wireless backhaul links may be implemented in accordance with PTP message replication and/or side-channel signaling, dual synchronization with GPS and PTP signaling, and/or timestamping.
摘要:
Systems and methods for integrating bandwidth management (BWM) equipment into a network in order to manage the use of bandwidth over multiple radio access technologies (RATs) relating to communications between a wireless transmit receive unit and a mobile core network (MCN). When integrating itself into the network, a BWM server may be placed between a MCN and an femto access point. In order for WTRUs to communicate with the MCN through the femto access point and a BWM server, a BWM server may need deep packet inspection capabilities.
摘要:
Methods, systems and apparatus for managing and/or enforcing one or more policies for managing internet protocol (“IP”) traffic among multiple accesses of a network in accordance with a policy for managing bandwidth among the multiple accesses are disclosed. Among the methods, systems and apparatus is a method that may include obtaining performance metrics associated with the multiple accesses. The method may also include adapting one or more rules of one or more the policies for managing IP traffic among the plurality of accesses based, at least in part, on the performance metrics and the policy for managing bandwidth among the plurality of accesses. The method may further include managing IP traffic associated with at least one wireless transmit and/or receive unit (“WTRU”) among the plurality of accesses responsive to the adapted rules.