Abstract:
Embodiments of the present disclosure provide techniques and configurations for integrally determining a parameter (e.g., temperature) of a die of an integrated circuit. In one instance, the apparatus may comprise a die including a first (e.g., remote) area and a second (e.g., local) area disposed at a distance from the first area, and circuitry to determine a parameter associated with the remote area of the die. The circuitry may include: a first sensing device disposed in the remote area, to provide first readings associated with the parameter; a second sensing device disposed in the local area, to provide second readings associated with the parameter; and a control module coupled with the sensing devices and disposed in the local area, to facilitate a determination of the parameter based on the first and second readings provided by the first and second sensing devices. Other embodiments may be described and/or claimed.
Abstract:
An apparatus is provided to calibrate an analog-to-digital converter (ADC). The apparatus includes a calibration circuitry coupled to an output of the ADC, wherein the calibration circuitry is to identify a maximum value and minimum value of the output of the ADC, and is to calibrate one or more performance parameters of the ADC according to the maximum and minimum values. The performance parameters include: gain of the ADC, offset of the ADC, and timing skew between the ADC and a neighboring ADC.
Abstract:
An apparatus is provided which comprises: a thermal sensor comprising one or more n-type devices or p-type devices that suffer from subthreshold factor variation, wherein the thermal sensor is to generate an output digital code representing a temperature; and a calibration circuitry coupled to the thermal sensor, wherein the calibration circuitry is to trim the effects of subthreshold factor variation from the output digital code.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for integrally determining a parameter (e.g., temperature) of a die of an integrated circuit. In one instance, the apparatus may comprise a die including a first (e.g., remote) area and a second (e.g., local) area disposed at a distance from the first area, and circuitry to determine a parameter associated with the remote area of the die. The circuitry may include: a first sensing device disposed in the remote area, to provide first readings associated with the parameter; a second sensing device disposed in the local area, to provide second readings associated with the parameter; and a control module coupled with the sensing devices and disposed in the local area, to facilitate a determination of the parameter based on the first and second readings provided by the first and second sensing devices. Other embodiments may be described and/or claimed.
Abstract:
A system for assigning a characterization and calibrating a parameter is disclosed. The system includes a frequency measurement circuit and a finite state machine. The frequency measurement circuit is configured to measure frequencies of an oscillatory signal and to generate a measurement signal including measured frequencies. The finite state machine is configured to control measurements by the frequency measurement circuit, to assign a characterization to a parameter based on the measurement signal, and to generate a calibration signal based on the characterized parameter.
Abstract:
A system for assigning a characterization and calibrating a parameter is disclosed. The system includes a frequency measurement circuit and a finite state machine. The frequency measurement circuit is configured to measure frequencies of an oscillatory signal and to generate a measurement signal including measured frequencies. The finite state machine is configured to control measurements by the frequency measurement circuit, to assign a characterization to a parameter based on the measurement signal, and to generate a calibration signal based on the characterized parameter.
Abstract:
An apparatus is provided which comprises: a thermal sensor comprising one or more n-type devices or p-type devices that suffer from subthreshold factor variation, wherein the thermal sensor is to generate an output digital code representing a temperature; and a calibration circuitry coupled to the thermal sensor, wherein the calibration circuitry is to trim the effects of subthreshold factor variation from the output digital code.
Abstract:
A system for assigning a characterization and calibrating a parameter is disclosed. The system includes a frequency measurement circuit and a finite state machine. The frequency measurement circuit is configured to measure frequencies of an oscillatory signal and to generate a measurement signal including measured frequencies. The finite state machine is configured to control measurements by the frequency measurement circuit, to assign a characterization to a parameter based on the measurement signal, and to generate a calibration signal based on the characterized parameter.
Abstract:
An apparatus is provided to calibrate an analog-to-digital converter (ADC). The apparatus includes a calibration circuitry coupled to an output of the ADC, wherein the calibration circuitry is to identify a maximum value and minimum value of the output of the ADC, and is to calibrate one or more performance parameters of the ADC according to the maximum and minimum values. The performance parameters include: gain of the ADC, offset of the ADC, and timing skew between the ADC and a neighboring ADC.
Abstract:
An apparatus is provided to calibrate an analog-to-digital converter (ADC). The apparatus includes a calibration circuitry coupled to an output of the ADC, wherein the calibration circuitry is to identify a maximum value and minimum value of the output of the ADC, and is to calibrate one or more performance parameters of the ADC according to the maximum and minimum values. The performance parameters include: gain of the ADC, offset of the ADC, and timing skew between the ADC and a neighboring ADC.