Abstract:
Microelectronic assemblies, related devices, and methods are disclosed herein. In some embodiments, a microelectronic assembly may include a package substrate; a bridge, embedded in the package substrate, wherein the bridge includes an integral passive component, and wherein a surface of the bridge include first contacts in a first interconnect area and second contacts in a second interconnect area; a first die coupled to the passive component via the first contacts in the first interconnect area; and a second die coupled to the second contacts in the second interconnect area.
Abstract:
Apparatuses and methods including an apparatus for an electronics package are disclosed. According to one embodiment, the apparatus can include one or more magnetic inductors, one or more capacitors positioned one of above or below to the one or more magnetic inductors and a plurality of electrical conductors comprising pillars. The pillars can extend substantially vertically to electrically connect the one or more magnetic inductors and the one or more capacitors to the electronics package and the one or more magnetic inductors, the one or more capacitors and the plurality of conductors are disposed one of above or below the electronics package; and at least one electrical conductor comprising a pillar extending substantially vertically to electrically connect the one or more magnetic inductors and the one or more capacitors.
Abstract:
Methods and apparatus relating to a compact partitioned capacitor design for multiple voltage and/or load domains (e.g., with improved decoupling) are described. In an embodiment, a capacitor provides substrate decoupling for a plurality of loads. Moreover, the capacitor is capable of decoupling two or more voltage domains. Furthermore, in some embodiments the capacitor is capable of decoupling two or more voltage domains and mitigating self-noise and/or cross-noise between them. Other embodiments are also disclosed and claimed.
Abstract:
Methods and apparatus relating to dynamic voltage regulator sensing and/or reference voltage setting techniques for multiple gated loads are described. In an embodiment, voltage regulator logic is coupled to one or more loads. Each of the one or more loads is in a separate power domain. The voltage regulator logic controls a sensed voltage from the one or more loads in response to a power gate control signal. Other embodiments are also disclosed and claimed.
Abstract:
Some embodiments include apparatus and methods using a package substrate and a die coupled to the package substrate. The package substrate includes conductive contacts, conductive paths coupled to the conductive contacts, and a resistor embedded in the package substrate. The die includes buffer circuits and a calibration module coupled to the buffer circuits and the resistor. The buffer circuits include output nodes coupled to the conductive contacts through the conductive paths. The calibration module is configured to perform a calibration operation to adjust resistances of the buffer circuits based on a value of a voltage at a terminal of the resistor during the calibration operation.
Abstract:
Technologies for low-leakage and low series resistance on-chip capacitors are disclosed. In the illustrative embodiment, each electrode of a capacitor is formed from two metal layers and vias between the metal layers. A high-k dielectric layer is between the metal layers. The electrodes are displaced relative to each other on the plane defined by the high-k dielectric layer. As a result, electric field lines of the capacitor are parallel to the high-k dielectric layer. The electrodes can be displaced from each other by more than the thickness of the high-k dielectric layer, reducing the leakage current through the high-k dielectric layer as compared to a capacitor with field lines perpendicular to the high-k dielectric layer. Such a capacitor may be used to provide power to circuits in a low-power state with little leakage current and/or may be used to absorb radiofrequency (RF) interference.
Abstract:
Various embodiments provide a magnetic sensing scheme for a voltage regulator circuit. The voltage regulator circuit may include a first inductor (also referred to as an output inductor) coupled between a drive circuit and an output node. The voltage regulator circuit may further include a second inductor (also referred to as a sense inductor) having a first terminal coupled to the first inductor at a tap point between terminals of the first inductor. The second inductor may provide a sense voltage at a second terminal of the second inductor. A control circuit may control a state of the voltage regulator circuit based on the sense voltage to provide a regulated output voltage at the output node. Other embodiments may be described and claimed.
Abstract:
Embodiments may relate to a semiconductor package. A conductive frame may be coupled with the semiconductor package. The conductive frame may include a first portion, a second portion, and a third portion positioned between the first portion and the second portion. The first portion may be coupled with the first side of the semiconductor package. The second portion may be coupled with the second side of the semiconductor package. The third portion may be coupled with the sidewall of the semiconductor package. Other embodiments may be described or claimed.
Abstract:
Some embodiments include apparatus and methods using a package substrate and a die coupled to the package substrate. The package substrate includes conductive contacts, conductive paths coupled to the conductive contacts, and a resistor embedded in the package substrate. The die includes buffer circuits and a calibration module coupled to the buffer circuits and the resistor. The buffer circuits include output nodes coupled to the conductive contacts through the conductive paths. The calibration module is configured to perform a calibration operation to adjust resistances of the buffer circuits based on a value of a voltage at a terminal of the resistor during the calibration operation.
Abstract:
Embodiments include apparatuses, methods, and systems with cross-coupling noise reduction in circuits. In embodiments, a circuit may include a common inductor and a negatively coupled inductor pair connected or coupled between the first inductor and a first load and a second load. The negatively coupled inductor pair may include a first and a second inductor. The first inductor may be connected or coupled to the first load and the second inductor may be connected or coupled to the second load to reduce cross-coupling noise between the first load and the second load. Examples of passive structures that may be used to implement the circuit are also described. Other embodiments may also be described and claimed.