Abstract:
To provide a circuit module capable of suppressing a decrease in an area for mounting an electronic component on a substrate even when a wire for shielding the electronic component is connected to the substrate. A circuit module according to the present disclosure includes a substrate, a first component mounted on the substrate and including a ground terminal on an upper surface, first wires that connect the ground terminal to the substrate, and a second component mounted on the substrate, in which overlapping first wires in plan view.
Abstract:
A wiring board includes a structure in which a plurality of wiring layers are stacked with insulating layers interposed therebetween, a plurality of pads for mounting an electronic component, the pads being formed on an outermost insulating layer on one surface side of the structure and exposed to the surface of the outermost insulating layer, and a recessed portion formed at a place corresponding to a mounting area for the electronic component. The recessed portion is formed in the outermost insulating layer at an area between the pads to which electrode terminals of the electronic component to be mounted are to be connected, respectively.
Abstract:
A power semiconductor package includes: a first power semiconductor die arranged on and electrically coupled to a first side of a first die pad; a first passive electronic component having a first end and an opposite second end, the first end being arranged on and coupled to the first side of the first die pad and the second end being coupled to an internal ledge of a first external contact; a second passive electronic component connected in series with the first passive electronic component; and an encapsulation encapsulating the first power semiconductor die and the first and second passive electronic components. The first external contact is exposed from a first lateral side of the encapsulation.
Abstract:
An electronic power device including: a first electronic power component in which all the electrodes are arranged at a first main face of the first electronic power component; and an electric contact element in which a first main face is arranged against the first main face of the first electronic power component and which includes plural separate electrically conductive portions to which the electrodes of the first electronic power component are electrically connected. The first electronic power component and the electric contact element together form a stack such that a first lateral face of each of the portions of the electric contact element, substantially perpendicular to the first main face of the electric contact element, is arranged against at least one metallization of a support forming an electric contact of the first electronic power component.
Abstract:
An electronic power device including: a first electronic power component in which all the electrodes are arranged at a first main face of the first electronic power component; and an electric contact element in which a first main face is arranged against the first main face of the first electronic power component and which includes plural separate electrically conductive portions to which the electrodes of the first electronic power component are electrically connected. The first electronic power component and the electric contact element together form a stack such that a first lateral face of each of the portions of the electric contact element, substantially perpendicular to the first main face of the electric contact element, is arranged against at least one metallization of a support forming an electric contact of the first electronic power component.
Abstract:
A power semiconductor device is provided. The power semiconductor device includes a leadframe, which includes a first chip carrier part and at least one second chip carrier part, which are fitted at a distance from one another and are in each case electrically conductive, at least one first power semiconductor component applied on the first chip carrier part, at least one second power semiconductor component applied on the second chip carrier part, external contacts in the form of external leads, and a capacitor. The capacitor is mounted on two adjacent external leads.
Abstract:
A semiconductor package including a circuit substrate, an interposer structure, a plurality of dies, and an insulating encapsulant is provided. The interposer structure is disposed on the circuit substrate. The plurality of dies is disposed on the interposer structure, wherein the plurality of dies is electrically connected to the circuit substrate through the interposer structure. The insulating encapsulant is disposed on the circuit substrate, wherein the insulating encapsulant surrounds the plurality of dies and the interposer structure and encapsulates at least the interposer structure, the insulating encapsulant has a groove that surrounds the interposer structure and the plurality of dies, and the interposer structure and the plurality of dies are confined to be located within the groove.
Abstract:
Some embodiments include apparatus and methods using a package substrate and a die coupled to the package substrate. The package substrate includes conductive contacts, conductive paths coupled to the conductive contacts, and a resistor embedded in the package substrate. The die includes buffer circuits and a calibration module coupled to the buffer circuits and the resistor. The buffer circuits include output nodes coupled to the conductive contacts through the conductive paths. The calibration module is configured to perform a calibration operation to adjust resistances of the buffer circuits based on a value of a voltage at a terminal of the resistor during the calibration operation.
Abstract:
Various embodiments provide an electronic module comprising a interposer comprising a fluid channel formed in an electrically isolating material and an electrically conductive structured layer; at least one electronic chip attached to the electrically conductive layer and in thermal contact to the fluid channel; and a molded encapsulation formed at least partially around the at least one electronic chip, wherein the electrically conductive structured layer is directly formed on the electrically isolating material.
Abstract:
Systems and methods relate to a semiconductor package comprising a first substrate or a 2D passive-on-glass (POG) structure with a passive component and a first set of one or more package pads formed on a face of a glass substrate. The semiconductor package also includes a second or laminate substrate with a second set of one or more package pads formed on a face of the second or laminate substrate. Solder balls are dropped, configured to contact the first set of one or more package pads with the second set of one or more package pads, wherein the first substrate or the 2D POG structure is placed face-up on the face of the second or laminate substrate. A printed circuit board (PCB) can be coupled to a bottom side of the second or laminate substrate.