Abstract:
Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
Abstract:
Implementations relate to detection and mitigation of potential collisions with a user control system. In some implementations, a method includes detecting an object in a sensing field of a sensor of a user control system, and the user control system includes a control input device. The control input device is in a controlling mode in which manipulation of the control input device activates a function of a manipulator device. The method includes determining that the object is an unidentified object and determining a characteristic of the object including a location with respect to the user control system, a velocity, or a trajectory. The method determines whether the characteristic of the object satisfies a condition corresponding to the characteristic, and exits the controlling mode in response to determining that the object is an unidentified object and that the characteristic satisfies the corresponding condition.
Abstract:
Implementations relate to a moveable display unit on a track. In some implementations, a control unit includes a support linkage including a first support coupled to a second support, a track member coupled to a distal portion of the second support, and a display unit coupled to the track member. The display unit includes a display device. The display unit is linearly translatable in first and second degrees of freedom provided by the support linkage. The display unit is rotatable, with respect to the second support, about a tilt axis in a third degree of freedom defined by the track member.
Abstract:
Techniques for control of an instrument include a device having an actuator. To perform an operation with an instrument coupled to the actuator, the instrument is operated according to a state machine by: transitioning the instrument from a gripped state to a clamped state in response to receiving a clamp command; transitioning the instrument from the clamped state to a firing state in response to receiving a fire command; transitioning the instrument from the firing state to a pause state in response to detecting a stall in the actuator used to actuate the instrument; transitioning the instrument from the pause state to a stop firing state in response to a pause limit being reached; and transitioning the instrument from the pause state to the firing state in response to the actuator beginning to move again or after a first predetermined period of time has elapsed since entering the pause state.
Abstract:
Systems and methods for instrument control include a first actuator for controlling a first mechanical degree of freedom, a second actuator for controlling a second mechanical degree of freedom, and a controller. The controller is configured to command the first actuator to maintain the first actuator at a first position, wherein actuation of the first actuator is subject to a first torque limit; command the second actuator to maintain the second actuator at a second position, wherein actuation of the second actuator is subject to a second torque limit; and in response to detecting that the first actuator cannot be maintained at the first position using actuation subject to the first torque limit and the second actuator can be maintained at the second position using actuation subject to the second torque limit, terminate the command to the first actuator to maintain the first actuator at the first position.
Abstract:
A system includes first and second manipulating means, and a means for detecting mounting of an imaging means to the first manipulating means, a means for determining a first reference frame for the imaging means while the imaging means is mounted to the first manipulating means, a means for controlling a tool means relative to the first reference frame by maintaining a position and orientation of a distal portion of the tool means relative to the imaging means in the first reference frame based on a position and orientation of an input means relative to a display means, a means for detecting mounting of the imaging means to the second manipulating means, a means for determining a second reference frame for the imaging means while the imaging means is mounted to the second manipulating means, and a means for controlling the tool means relative to the second reference frame.
Abstract:
A system and method of variable velocity control of an instrument by a computer-assisted device includes a computer-assisted device that includes an actuator and one or more processors. To perform an operation with an instrument coupled to the computer-assisted device, the one or more processors are configured to set a velocity set point of the actuator to an initial velocity, monitor force or torque applied by the actuator to actuate the instrument, when the applied force or torque is above a first force or torque limit, determine whether a total duration of a set of pauses occurring during the operation of the instrument is below a maximum pause threshold, and in response to determining that the total duration is below the maximum pause threshold, pause the operation of the instrument.
Abstract:
Teleoperated control includes commanding, in response to a first input to move a tool while an imaging device is mounted to a first manipulator and a tool is mounted to a second manipulator, actuator(s) of the second manipulator to move the tool with a first motion relative to a first reference frame that corresponds with a first movement of an input device relative to a display, the first reference frame defined based on the imaging device mounted to the first manipulator; and commanding, in response to receiving a second input to move the tool while the imaging device is mounted to the third manipulator, the actuator(s) to move the tool with a second motion relative to a second reference frame that corresponds with a second movement of the input device relative to the display, the second reference frame defined based on the imaging device being mounted to the third manipulator.
Abstract:
Implementations relate to a moveable display system. In some implementations, a control unit includes a first support and a second support coupled to the first support. The second support is linearly translatable along a first axis in a first degree of freedom with respect to the first support, and at least a portion of the second support is linearly translatable along a second axis in a second degree of freedom with respect to the first support. The control unit includes a display unit rotatably coupled to the second support. The display unit is rotatable about a third axis in a third degree of freedom with respect to the second support, and the display unit includes a display device.
Abstract:
Systems and methods for instrument control include first and second actuators and a controller configured to command the first actuator to maintain a first degree of freedom (DOF) of an instrument at a first position; command the second actuator to maintain a second DOF of the instrument at a second position; detect, while the first actuator is maintaining the first DOF at the first position, a first manual actuation of the first actuator that exceeds a first threshold; detect, while the second actuator is maintaining the second DOF at the second position, a second manual actuation of the second actuator that does not exceed a second threshold; and in response to detecting that the first manual actuation exceeds the first threshold and the second manual actuation does not exceed the second threshold, terminate the command to the first actuator to maintain the first DOF at the first position.