摘要:
A CMOS device and a method for its fabrication are disclosed. In one embodiment the CMOS device includes an NMOS transistor and a PMOS transistor each of which has silicided source and drain regions and a silicon gate electrode which includes a titanium nitride barrier layer. The NMOS transistor and PMOS transistors are coupled together by a silicon layer which is capped by a layer of titanium nitride barrier material. The source and drain regions are silicided with cobalt or other metal silicide which is prevented from reacting with the silicon gate electrode and interconnect by the presence of the titanium nitride barrier layer.
摘要:
A process for forming a transistor (10) begins by providing a substrate (12). Field oxide regions (14) or equivalent isolation is formed overlying or within the substrate (12). A gate oxide (16) and a conductive layer (18) are formed. A masking layer (20) is formed overlying the conductive layer (18). The masking layer (20) and the conductive layer (18) are etched to form a gate electrode and define a drain region (19) and a source region (21). Spacers (22) are formed adjacent the gate electrode. First silicided regions (26) are formed over the source and drain regions (21 and 19 respectively). The masking layer prevents the gate electrode from siliciding. The masking layer (20) is removed and a second silicided region (30) is formed overlying the gate electrode. The second silicided region (30) and the silicided regions (26) are made of different silicides.
摘要:
A transistor (10 or 11) and method of formation. The transistor (10) has a substrate (12). The substrate (12) has an overlying dielectric layer (14) and an insulated conductive control electrode (16) which overlies the dielectric layer (14). A dielectric region (18) overlies the insulated conductive control electrode (16), and a dielectric region (20) is adjacent to the insulated conductive control electrode (16). A spacer (30) is adjacent to the dielectric region (20). Epitaxial regions (24) are adjacent to the spacer (30) and the spacer (30) is overlying portions of the epitaxial regions (24). A dielectric region (26) overlies the epitaxial regions (24). Highly doped source and drain regions (32) underlie the epitaxial regions (24). LDD regions (28), which are underlying the spacer (30), are adjacent to and electrically connected to the source and drain regions (32).
摘要:
A process for fabricating an isolated silicon on insulator (SOI) field effect transistor (FET) (10, 11, 13, 15). The SOI FET is made on a substrate material (12). In one form, a first control electrode referred to as gate (24), is contained within the substrate (12) underlying a dielectric layer (14). A second control electrode referred to as gate (26) overlies a dielectric layer (28). A source and a drain current electrode are formed from a germanium-silicon layer (18). A silicon layer (16) forms an isolated channel region of the SOI FET. The gates (12, 24) are separated from the channel by gate dielectric layers (14, 28). The germanium-silicon layer (18) is much thicker than the silicon layer (16) which is made thin to provide a thin channel region. An optional nitride layer 20 overlies the germanium-silicon layer (18).
摘要:
An insulated gate field effect device is disclosed having a channel region which includes both a horizontal and a vertical portion. The device is fabricated on a semiconductor substrate having a recess formed in its surface. The recess has a bottom forming a second surface with the wall of the recess extending between the first and second surfaces. A source region is formed at the first surface and a drain is formed at the second surface spaced apart from the wall. A channel region is defined along the wall and the second surface between the drain region and the source region. A gate insulator and gate electrode overlie the channel region.
摘要:
An improved LDD CMOS fabrication is disclosed which uses a reduced number of processing steps. In accordance with one embodiment of the invention, a silicon substrate is provided which has first and second surface regions of opposite conductivity type. First and second silicon gate electrodes overlie the first and second surface regions, respectively. A dopant source layer containing dopant impurities of the first conductivity type is deposited over the first and second gate electrodes. This dopant source layer is patterned to form sidewall spacers at the edges of the first silicon gate electrode. Those sidewall spacers are used in the formation of the LDD structure on the devices formed in the first surface region. After removing the sidewall spacers, the structure is heated to diffuse dopant impurities from the dopant source layer into the second surface region to form source and drain regions of transistors formed in that region. The only lithography step needed in this portion of the process is one to protect the dopant source layer over the second region while sidewall spacers are being formed in the first region.
摘要:
An LDD transistor is formed by using a process which insures that a layer of gate oxide is not inadvertently etched into and is not ruptured by static electrical charges. At least two thicknesses of gate electrode material of varying doping levels are formed over a layer of gate oxide which is above a semiconductor substrate. A chemical etch is utilized wherein by monitoring a ratio of chemical product and chemical reactant of the chemical etch reactions, specific endpoints in the etching of the gate electrode material can be easily detected. A small layer of gate electrode material is allowed to remain over the gate oxide layer during ion implanting and the formation and removal of gate sidewall spacers used in fabricating an LDD transistor. After formation of most of the LDD transistor, the remaining protective thickness of gate electrode material is removed and the exposed gate oxide layer is exposed to a final oxidizing anneal step. In other forms, an inverse-T gate structure LDD transistor is formed, and an LDD transistor is formed via a process having a reduced number of ion implants steps.
摘要:
A process for fabricating a CMOS device using one sidewall spacer for both the source/drain implant and salicide formation, thereby providing an improved salicided source/drain structure. The use of one sidewall spacer for both the source/drain implant and the silicide formation facilitates the closer spacing of the silicide region to the gate edge. Prior to the salicidation, a silicon overetch is performed to remove the P+ implant in the source/drain and poly regions of the NMOST. The silicon overetch forms a concave surface on the N+ source/drain regions, which allows salicide formation closer to the edge of the channel. Due to the proximity of the edge of the silicide to the edge of the channel, the series resistance of the NMOST is significantly reduced.
摘要:
A process is disclosed for the selective oxidation of MOS devices which preferentially removes implanted field doping from selected silicon substrate regions. In one embodiment, a CMOS substrate is provided with an overlying layer of silicon oxide and a layer of polycrystalline silicon. Active and field regions are defined in each of the CMOS device regions. A blanket boron implantation dopes both the N-type and P-type field regions. The N-type field region is selectively oxidized at a greater oxidation rate than is the P-type field region to cause a greater segregation of boron impurities into the growing oxide over the N-type field region. Regions of enhanced boron doping are thus formed under the field oxide in the P-type region, but not in the N-type region.
摘要:
A process for forming an insulated gate field effect transistor (IGFET) having a semiconductor gate with a central portion and end portions on either side thereof where the portions are of two different conductivity types. Typically, a central portion of the gate, such as a doped polysilicon portion of a first conductivity type, is flanked by end portions near the source/drain regions, where the end portions are doped with an impurity of a second conductivity type. The central portion of the gate is formed by conventional gate patterning whereas the end portions are formed by typical procedures for forming sidewall spacers using a conformal layer of in situ doped polycrystalline silicon (polysilicon) or other semiconductor material and an anisotropic etch.