摘要:
A patterned layer is formed by removing nanoscale passivating particle from a first plurality of nanoscale structural particles or by adding nanoscale passivating particles to the first plurality of nanoscale structural particles. Each of a second plurality of nanoscale structural particles is deposited on each of corresponding ones of the first plurality of nanoscale structural particles that is not passivated by one of the plurality of nanoscale passivating particles.
摘要:
A patterned layer is formed by removing nanoscale passivating particle from a first plurality of nanoscale structural particles or by adding nanoscale passivating particles to the first plurality of nanoscale structural particles. Each of a second plurality of nanoscale structural particles is deposited on each of corresponding ones of the first plurality of nanoscale structural particles that is not passivated by one of the plurality of nanoscale passivating particles.
摘要:
A method of photolithographically forming an integrated circuit feature, such as a conductive structure, for example a gate electrode (15), or such as a patterned insulator feature, is disclosed. A critical dimension (CD) for a photolithography process defines a minimum line width of photoresist or other masking material that may be patterned by the process. A photomask (20, 30, 40, 50, 60) has a mask feature (25, 35, 45, 55, 65) that has varying width portions along its length. The wider portions have a width (L1) that is at or above the critical dimension of the process, while the narrower portions have a width (L2) that is below the critical dimension of the process. In the case of a patterned etch of a conductor, photoexposure and etching of conductive material using the photomask (20, 30, 40, 50, 60) defines a gate electrode (15) for a transistor (10) that has a higher drive current than a transistor having a uniform gate width at the critical dimension.
摘要:
An improvement to the optical proximity correction process used in photolithography. Mask pattern modeling is added to the optical proximity correction process, producing patterns that are optimized for both reticle manufacture and wafer fabrication. Pattern validation is improved by applying a mask pattern model and a wafer pattern model to the validation process. Reticle inspection is improved by adding a mask inspection tool model that comprehends the limitations of the inspection tool.
摘要:
A stencil mask (10) has a membrane (14) under tensile stress and at least one pattern opening (22) formed through the membrane (14). A plurality of stress relief openings (30) are formed in the membrane for reducing stress-induced distortion of the membrane and the mask pattern. The stress relief openings (30) are positioned to relieve concentrations of stress within the membrane (14) such as those resulting from non-regularities within the pattern. In one embodiment, a screening material (56), less rigid than the membrane (14), is contained within the stress relief openings (30). Methods of forming such masks (10) are also disclosed.
摘要:
A method of performing and verifying an integrated circuit layout is provided that comprises the steps of performing the layout of a mask. Proximity correction techniques are then applied to the mask layout data. Theoretical contours which comprise curvilinear forms are then extrapolated from the corrected mask data set. The curvilinear contour data is then bounded using boxing algorithms in order to generate a bounded contour data set. The bounded contour data set can then be compared to the original input mask data to detect design rule violations and other characteristics of the original layout.
摘要:
A proprioceptive neuromuscular facilitation exercise device including a drive motor, gear mechanism connected with the drive motor, a control connected with the motor for operating the motor in either direction, and a rotating member connected with the gear mechanism and adapted to be coupled to a body member of a user for moving the body member in the desired direction. The movable member moves in increments and is lockable at desired positions for holding the body member against a force tending to return it to normal position or a force in the opposite direction. One exercise device rotates the upper torso relative to the spine. Another of the exercise devices rotates the upper legs of a user relative to the hip joints and lower legs relative to the knees. A further device operates the arms forward and backward relative to the shoulder joint and includes parallel vertical shafts movable together and apart to adjust for difference distances between the shoulder joints of a user.
摘要:
A method for forming a quantum effect switching device is disclosed which comprises the step of forming a heterostructure substrate 10. A silicon nitride layer 22 is formed on an outer surface of the substrate 10. An aluminum mask body 30 is formed using a lift-off procedure. Aluminum mask body 30 is then used to form a silicon nitride mask body 32 from the silicon nitride layer 22 using a CF.sub.4 /O.sub.2 reactive ion etch process. A boron trichloride etch process is then used to form a dual column structure 34 while removing the aluminum mask body 30. A buffered HF wet etch process removes the silicon nitride mask body 32. Separate metal contacts can then be made to electrically separate points on the outer surface of the dual column structure 34.
摘要:
A design tool which accepts the input of a grayscale underpainting and a number of artistic selections, such as primary colors, levels of intensity for each color, and lines of color drawn on a copy of the grayscale underpainting and forms a data base which can be used by a painting tool to create a Matrix painting.
摘要:
A quantum dot logic unit (8) is provided which comprises a row of quantum dots (14, 16, and 18), with each quantum dot separated by vertical heterojunction tunneling barriers (20, 22, 24, and 26). Electric potentials placed on inputs (32, 34, and 36) are operable to modulate quantum states within the quantum dots, thus controlling electron tunneling through the tunneling barriers.