摘要:
A substrate such as a sapphire substrate or the like is set to a molecular beam epitaxy (MBE) apparatus. Next, the temperature of the substrate is elevated to the temperature which is lower than the temperature at which a predetermined ZnO based oxide semiconductor layer (i.e. function layer) is grown (S1). Then, raw materials containing oxygen radical is irradiated to the substrate to grow a buffer layer made of ZnO based oxide semiconductor (S2). Subsequently, the irradiation of oxygen radical is stopped so as to eliminate the influence of oxygen onto the buffer layer (S3). Then, the temperature of the substrate is elevated to the temperature at which the predetermined ZnO based oxide semiconductor layer is grown (S4). After that, raw materials containing oxygen radical is irradiated so as to sequentially grow a ZnO based oxide semiconductor layer as a function layer (S5). As a result, a ZnO based oxide semiconductor layer with low concentration of residual carrier can be grown, and a semiconductor light emitting device such as light emitting diode and laser diode with high light emitting characteristics can be obtained.
摘要:
In the case in which a ZnO based oxide semiconductor layer is to be hetero-epitaxially grown on a substrate formed of a material which is different from that of a ZnO based oxide semiconductor, the ZnO based oxide semiconductor layer is grown at a high temperature of 500° C. or more, and supply of oxygen is stopped and gradual cooling is carried out until a substrate temperature is lowered to 350° C. or less after the growth of the ZnO based oxide semiconductor layer is completed. As a result, it is possible to suppress the generation of dislocations or crystal defects over an epitaxial grown layer based on the atmosphere while the substrate temperature is lowered after the growth of the semiconductor layer and a difference in a coefficient of thermal expansion, thereby obtaining a semiconductor device having a high quality ZnO based oxide semiconductor layer which has an excellent crystalline property and a semiconductor light emitting device having the high characteristics.
摘要:
A ZnO based oxide semiconductor layer is grown on a sapphire substrate 1 by supplying, for example, raw materials made of Zn and O constituting ZnO and a p-type dopant material made of N without supplying an n-type dopant material (a-step). By stopping the supply of the material of O and further supplying an n-type dopant material made of Ga, the semiconductor layer is doped with the p-type dopant and the n-type dopant, thereby forming a p-type ZnO layer (2a) (b-step). By repeating the steps (a) and (b) plural times, a p-type ZnO based oxide semiconductor layer is grown. As a result, N to be the p-type dopant can be doped in a stable carrier concentration also during high temperature growth in which a residual carrier concentration can be reduced, and the carrier concentration of the p-type layer made of the ZnO based oxide semiconductor can be increased sufficiently.
摘要:
The closing plates (61b), (61c) are provided on the both end portions of the cylindrical insulator body (61a), the gas introduction tube for introducing a gaseous substance is inserted into one plate (61b) of the closing plates of the plasma chamber (61) for making the gaseous substance plasmatic within it, and on the other plate (61c), the plasma radiation outlet (61d) is provided. Then, nearby the plasma jet (63) outgoing from the radiation outlet, the electrode (64) for applying a high electric field of an ion trapper is provided so as to be opposed to the grounded electrode (65) interposed the plasma jet between them. This electrode for applying a high electric field is fixed on the grounded metal plate (61e) provided on the other plate (61c) via the insulation porcelain (66) made of MgO or quartz. As a result, a radical cell device which does not blow-off and mix up Al into the layer epitaxially grown is obtained ,and a Groups II-VI compound semiconductor device because undoped Al is not contained in the semiconductor layers.
摘要:
A light emitting device includes a silicon substrate (1), a silicon nitride film (2) formed on the surface of the silicon substrate (1), at least an n-type layer (3), (4) and a p-type layer (6), (7) which are formed on the silicon nitride film (2) and also which are made of a ZnO based compound semiconductor, and a semiconductor layer lamination (11) in which layers are laminated to form a light emitting layer. Preferably this silicon nitride film (2) is formed by thermal treatment conducted in an atmosphere containing nitrogen such as an ammonium gas. Also, in another embodiment, a light emitting device is formed by growing a ZnO based compound semiconductor layer on a main face of a sapphire substrate, the main face being perpendicular to the C-face thereof. As a result, it is possible to obtain a device using a ZnO based compound with high properties such as an LED very excellent in crystallinity and having a high light emitting efficiency.
摘要:
A light emitting device includes a silicon substrate (1), a silicon nitride film (2) formed on the surface of the silicon substrate (1), at least an n-type layer (3), (4) and a p-type layer (6), (7) which are formed on the silicon nitride film (2) and also which are made of a ZnO based compound semiconductor, and a semiconductor layer lamination (11) in which layers are laminated to form a light emitting layer. Preferably this silicon nitride film (2) is formed by thermal treatment conducted in an atmosphere containing nitrogen such as an ammonium gas. Also, in another embodiment, a light emitting device is formed by growing a ZnO based compound semiconductor layer on a main face of a sapphire substrate, the main face being perpendicular to the C-face thereof. As a result, it is possible to obtain a device using a ZnO based compound with high properties such as an LED very excellent in crystallinity and having a high light emitting efficiency.
摘要:
A light emitting device includes a silicon substrate (1), a silicon nitride film (2) formed on the surface of the silicon substrate (1), at least an n-type layer (3), (4) and a p-type layer (6), (7) which are formed on the silicon nitride film (2) and also which are made of a ZnO based compound semiconductor, and a semiconductor layer lamination (11) in which layers are laminated to form a light emitting layer. Preferably this silicon nitride film (2) is formed by thermal treatment conducted in an atmosphere containing nitrogen such as an ammonium gas. Also, in another embodiment, a light emitting device is formed by growing a ZnO based compound semiconductor layer on a main face of a sapphire substrate, the main face being perpendicular to the C-face thereof. As a result, it is possible to obtain a device using a ZnO based compound with high properties such as an LED very excellent in crystallinity and having a high light emitting efficiency.
摘要:
A light emitting device includes a silicon substrate (1), a silicon nitride film (2) formed on the surface of the silicon substrate (1), at least an n-type layer (3), (4) and a p-type layer (6), (7) which are formed on the silicon nitride film (2) and also which are made of a ZnO based compound semiconductor, and a semiconductor layer lamination (11) in which layers are laminated to form a light emitting layer. Preferably this silicon nitride film (2) is formed by thermal treatment conducted in an atmosphere containing nitrogen such as an ammonium gas. Also, in another embodiment, a light emitting device is formed by growing a ZnO based compound semiconductor layer on a main face of a sapphire substrate, the main face being perpendicular to the C-face thereof. As a result, it is possible to obtain a device using a ZnO based compound with high properties such as an LED very excellent in crystallinity and having a high light emitting efficiency.
摘要:
There is provided a semiconductor light emitting device in which light emitting efficiency is totally improved in case of emitting a light having a short wavelength of 400 nm or less by raising internal quantum efficiency by enhancing crystallinity of semiconductor layers laminated and by raising external quantum efficiency by taking out the light emitted by preventing the light emitted from being absorbed in the substrate or the like, as much as possible. In case of laminating ZnO compound semiconductor layers (2 to 6) so as to form a light emitting layer forming portion (7) for emitting the light having a wavelength of 400 nm or less on a substrate (1), a substrate composed of MgxZn1-xO (0≦x≦0.5) is used as the substrate (1).
摘要翻译:提供了一种半导体发光器件,其中通过提高层叠的半导体层的结晶度并通过提高外部量子效率来提高内部量子效率,并且通过提高外部量子效率来发射具有400nm或更小的短波长的光的发光效率得到全面改善 通过防止发射的光被吸收在基板等中而发出的光被尽可能多地取出。 在层叠ZnO化合物半导体层(2〜6)以在基板(1)上形成发光波长为400nm以下的光的发光层形成部(7)的情况下,将由Mg x Zn 1 -xO(0≦̸ x≦̸ 0.5)用作衬底(1)。
摘要:
A wireless plethysmogram sensor unit is capable of obtaining a plethysmogram from a living tissue of a measuring object and of transmitting the plethysmogram to a processing unit outside the wireless plethysmogram sensor unit. The sensor unit includes a light source to emit measuring light into the living tissue and a light receiving element to receive light emerging from the tissue, which is accompanied by pulsation caused by absorption by arteries in the tissue. A memory stores a plethysmogram obtained in accordance with the light received by the light receiving element. A short range wireless communicator transmits the plethysmogram to the processing unit. A power source provides power to other elements in the sensor unit, and a controller controls the elements of the sensor unit.