Radical cell device and method for manufacturing groups II-VI compound semiconductor device
    4.
    发明授权
    Radical cell device and method for manufacturing groups II-VI compound semiconductor device 有权
    激光电池器件及其制造方法II-VI族化合物半导体器件

    公开(公告)号:US06472241B2

    公开(公告)日:2002-10-29

    申请号:US09939719

    申请日:2001-08-28

    IPC分类号: H01L2100

    CPC分类号: C30B23/06 H01L33/0087

    摘要: The closing plates (61b), (61c) are provided on the both end portions of the cylindrical insulator body (61a), the gas introduction tube for introducing a gaseous substance is inserted into one plate (61b) of the closing plates of the plasma chamber (61) for making the gaseous substance plasmatic within it, and on the other plate (61c), the plasma radiation outlet (61d) is provided. Then, nearby the plasma jet (63) outgoing from the radiation outlet, the electrode (64) for applying a high electric field of an ion trapper is provided so as to be opposed to the grounded electrode (65) interposed the plasma jet between them. This electrode for applying a high electric field is fixed on the grounded metal plate (61e) provided on the other plate (61c) via the insulation porcelain (66) made of MgO or quartz. As a result, a radical cell device which does not blow-off and mix up Al into the layer epitaxially grown is obtained ,and a Groups II-VI compound semiconductor device because undoped Al is not contained in the semiconductor layers.

    摘要翻译: 封闭板(61b),(61c)设置在圆筒形绝缘体(61a)的两端部,将用于引入气态物质的气体导入管插入等离子体的封闭板的一个板(61b) 用于在其内制备气态物质的室(61),在另一个板(61c)上设置有等离子体辐射出口(61d)。 然后,在从辐射出口排出的等离子体射流(63)附近,设置用于施加离子捕获器的高电场的电极(64),以与插入其间的等离子体射流的接地电极(65)相对 。 用于施加高电场的电极经由由MgO或石英制成的绝缘瓷(66)固定在设置在另一板(61c)上的接地金属板(61e)上。 结果,可以获得不将Al吹出和外延生长的层的自由基电池器件,由于在半导体层中不含有未掺杂的Al的II-VI族化合物半导体器件。

    ZnO based compound semiconductor light emitting device and method for manufacturing the same
    5.
    发明授权
    ZnO based compound semiconductor light emitting device and method for manufacturing the same 失效
    ZnO系化合物半导体发光元件及其制造方法

    公开(公告)号:US07605012B2

    公开(公告)日:2009-10-20

    申请号:US11166254

    申请日:2005-06-27

    IPC分类号: H01L21/00

    摘要: A light emitting device includes a silicon substrate (1), a silicon nitride film (2) formed on the surface of the silicon substrate (1), at least an n-type layer (3), (4) and a p-type layer (6), (7) which are formed on the silicon nitride film (2) and also which are made of a ZnO based compound semiconductor, and a semiconductor layer lamination (11) in which layers are laminated to form a light emitting layer. Preferably this silicon nitride film (2) is formed by thermal treatment conducted in an atmosphere containing nitrogen such as an ammonium gas. Also, in another embodiment, a light emitting device is formed by growing a ZnO based compound semiconductor layer on a main face of a sapphire substrate, the main face being perpendicular to the C-face thereof. As a result, it is possible to obtain a device using a ZnO based compound with high properties such as an LED very excellent in crystallinity and having a high light emitting efficiency.

    摘要翻译: 发光器件包括:硅衬底(1),形成在硅衬底(1)的表面上的氮化硅膜(2),至少n型层(3),(4)和p型 形成在氮化硅膜(2)上并且由ZnO基化合物半导体制成的层(6),(7)和层叠层以形成发光层的半导体层层叠体 。 优选地,该氮化硅膜(2)通过在含氮气体的气氛中进行热处理而形成。 此外,在另一实施例中,通过在蓝宝石衬底的主面上生长ZnO基化合物半导体层,主面垂直于其C面而形成发光器件。 结果,可以获得使用具有高性能的ZnO基化合物的器件,例如非常优异的结晶度并且具有高发光效率的LED。

    ZnO based compound semiconductor light emitting device and method for manufacturing the same
    6.
    发明授权
    ZnO based compound semiconductor light emitting device and method for manufacturing the same 失效
    ZnO系化合物半导体发光元件及其制造方法

    公开(公告)号:US06987029B2

    公开(公告)日:2006-01-17

    申请号:US10713205

    申请日:2003-11-17

    IPC分类号: H01L21/00

    摘要: A light emitting device includes a silicon substrate (1), a silicon nitride film (2) formed on the surface of the silicon substrate (1), at least an n-type layer (3), (4) and a p-type layer (6), (7) which are formed on the silicon nitride film (2) and also which are made of a ZnO based compound semiconductor, and a semiconductor layer lamination (11) in which layers are laminated to form a light emitting layer. Preferably this silicon nitride film (2) is formed by thermal treatment conducted in an atmosphere containing nitrogen such as an ammonium gas. Also, in another embodiment, a light emitting device is formed by growing a ZnO based compound semiconductor layer on a main face of a sapphire substrate, the main face being perpendicular to the C-face thereof. As a result, it is possible to obtain a device using a ZnO based compound with high properties such as an LED very excellent in crystallinity and having a high light emitting efficiency.

    摘要翻译: 发光器件包括:硅衬底(1),形成在硅衬底(1)的表面上的氮化硅膜(2),至少n型层(3),(4)和p型 形成在氮化硅膜(2)上并且由ZnO基化合物半导体制成的层(6),(7)和层叠层以形成发光层的半导体层层叠体 。 优选地,该氮化硅膜(2)通过在含氮气体的气氛中进行热处理而形成。 此外,在另一实施例中,通过在蓝宝石衬底的主面上生长ZnO基化合物半导体层,主面垂直于其C面而形成发光器件。 结果,可以获得使用具有高性能的ZnO基化合物的器件,例如非常优异的结晶度并且具有高发光效率的LED。

    ZnO compound semiconductor light emitting element
    7.
    发明授权
    ZnO compound semiconductor light emitting element 失效
    ZnO化合物半导体发光元件

    公开(公告)号:US06674098B1

    公开(公告)日:2004-01-06

    申请号:US10031931

    申请日:2002-01-25

    IPC分类号: H01L2715

    摘要: A light emitting device includes a silicon substrate (1), a silicon nitride film (2) formed on the surface of the silicon substrate (1), at least an n-type layer (3), (4) and a p-type layer (6), (7) which are formed on the silicon nitride film (2) and also which are made of a ZnO based compound semiconductor, and a semiconductor layer lamination (11) in which layers are laminated to form a light emitting layer. Preferably this silicon nitride film (2) is formed by thermal treatment conducted in an atmosphere containing nitrogen such as an ammonium gas. Also, in another embodiment, a light emitting device is formed by growing a ZnO based compound semiconductor layer on a main face of a sapphire substrate, the main face being perpendicular to the C-face thereof. As a result, it is possible to obtain a device using a ZnO based compound with high properties such as an LED very excellent in crystallinity and having a high light emitting efficiency.

    摘要翻译: 发光器件包括:硅衬底(1),形成在硅衬底(1)的表面上的氮化硅膜(2),至少n型层(3),(4)和p型 形成在氮化硅膜(2)上并且由ZnO基化合物半导体制成的层(6),(7)和层叠层以形成发光层的半导体层层叠体 。 优选地,该氮化硅膜(2)通过在含氮气体的气氛中进行热处理而形成。 此外,在另一实施例中,通过在蓝宝石衬底的主面上生长ZnO基化合物半导体层,主面垂直于其C面而形成发光器件。 结果,可以获得使用具有高性能的ZnO基化合物的器件,例如非常优异的结晶度并且具有高发光效率的LED。

    ZnO based compound semiconductor light emitting device and method for manufacturing the same
    8.
    发明申请
    ZnO based compound semiconductor light emitting device and method for manufacturing the same 失效
    ZnO系化合物半导体发光元件及其制造方法

    公开(公告)号:US20050247954A1

    公开(公告)日:2005-11-10

    申请号:US11166254

    申请日:2005-06-27

    摘要: A light emitting device includes a silicon substrate (1), a silicon nitride film (2) formed on the surface of the silicon substrate (1), at least an n-type layer (3), (4) and a p-type layer (6), (7) which are formed on the silicon nitride film (2) and also which are made of a ZnO based compound semiconductor, and a semiconductor layer lamination (11) in which layers are laminated to form a light emitting layer. Preferably this silicon nitride film (2) is formed by thermal treatment conducted in an atmosphere containing nitrogen such as an ammonium gas. Also, in another embodiment, a light emitting device is formed by growing a ZnO based compound semiconductor layer on a main face of a sapphire substrate, the main face being perpendicular to the C-face thereof. As a result, it is possible to obtain a device using a ZnO based compound with high properties such as an LED very excellent in crystallinity and having a high light emitting efficiency.

    摘要翻译: 发光器件包括:硅衬底(1),形成在硅衬底(1)的表面上的氮化硅膜(2),至少n型层(3),(4)和p型 形成在氮化硅膜(2)上并且由ZnO基化合物半导体制成的层(6),(7)和层叠层以形成发光层的半导体层层叠体 。 优选地,该氮化硅膜(2)通过在含氮气体的气氛中进行热处理而形成。 此外,在另一实施例中,通过在蓝宝石衬底的主面上生长ZnO基化合物半导体层,主面垂直于其C面而形成发光器件。 结果,可以获得使用具有高性能的ZnO基化合物的器件,例如非常优异的结晶度并且具有高发光效率的LED。

    Zinc oxide based compound semiconductor light emitting device
    9.
    发明授权
    Zinc oxide based compound semiconductor light emitting device 有权
    氧化锌类化合物半导体发光元件

    公开(公告)号:US08941105B2

    公开(公告)日:2015-01-27

    申请号:US11886918

    申请日:2006-03-23

    申请人: Ken Nakahara

    发明人: Ken Nakahara

    摘要: There is provided a semiconductor light emitting device in which light emitting efficiency is totally improved in case of emitting a light having a short wavelength of 400 nm or less by raising internal quantum efficiency by enhancing crystallinity of semiconductor layers laminated and by raising external quantum efficiency by taking out the light emitted by preventing the light emitted from being absorbed in the substrate or the like, as much as possible. In case of laminating ZnO compound semiconductor layers (2 to 6) so as to form a light emitting layer forming portion (7) for emitting the light having a wavelength of 400 nm or less on a substrate (1), a substrate composed of MgxZn1-xO (0≦x≦0.5) is used as the substrate (1).

    摘要翻译: 提供了一种半导体发光器件,其中通过提高层叠的半导体层的结晶度并通过提高外部量子效率来提高内部量子效率,并且通过提高外部量子效率来发射具有400nm或更小的短波长的光的发光效率得到全面改善 通过防止发射的光被吸收在基板等中而发出的光被尽可能多地取出。 在层叠ZnO化合物半导体层(2〜6)以在基板(1)上形成发光波长为400nm以下的光的发光层形成部(7)的情况下,将由Mg x Zn 1 -xO(0≦̸ x≦̸ 0.5)用作衬底(1)。

    WIRELESS PLETHYSMOGRAM SENSOR UNIT, A PROCESSING UNIT FOR PLETHYSMOGRAM AND A PLETHYSMOGRAM SYSTEM
    10.
    发明申请
    WIRELESS PLETHYSMOGRAM SENSOR UNIT, A PROCESSING UNIT FOR PLETHYSMOGRAM AND A PLETHYSMOGRAM SYSTEM 有权
    无线传感器传感器单元,PLTHYSMOGRAM和PLTHYSMOGRAM系统的处理单元

    公开(公告)号:US20120022382A1

    公开(公告)日:2012-01-26

    申请号:US13179814

    申请日:2011-07-11

    IPC分类号: A61B5/02

    摘要: A wireless plethysmogram sensor unit is capable of obtaining a plethysmogram from a living tissue of a measuring object and of transmitting the plethysmogram to a processing unit outside the wireless plethysmogram sensor unit. The sensor unit includes a light source to emit measuring light into the living tissue and a light receiving element to receive light emerging from the tissue, which is accompanied by pulsation caused by absorption by arteries in the tissue. A memory stores a plethysmogram obtained in accordance with the light received by the light receiving element. A short range wireless communicator transmits the plethysmogram to the processing unit. A power source provides power to other elements in the sensor unit, and a controller controls the elements of the sensor unit.

    摘要翻译: 无线体积描记传感器单元能够从测量对象的生物体组织获取体积图,并将体积图传送到无线体积描记传感器单元外部的处理单元。 传感器单元包括用于将测量光发射到生物体组织中的光源和用于接收从组织出射的光的光接收元件,其伴随着由组织中的动脉的吸收引起的脉动。 存储器存储根据由光接收元件接收的光获得的体积图。 短距离无线通信器将体积图传送到处理单元。 电源为传感器单元中的其他元件提供电力,并且控制器控制传感器单元的元件。