Abstract:
In a process for fabricating a nonvolatile semiconductor memory of the tunneling type, when tunnel windows are formed in an oxide film on a semiconductor substrate, the oxide film is etched first by a dry etching process, then by a wet etching process. The dry etching process quickly removes most of the oxide material in the window areas, without enlarging the windows laterally, but stops short of the substrate, thereby avoiding damage to the substrate surface. The wet etching process takes the windows the rest of the way down to the semiconductor substrate surface. Since only a small amount of oxide needs to be wet-etched, lateral enlargement of the windows by the wet etching process can be tightly controlled, and small tunnel windows can be formed without the need for extravagantly sophisticated fabrication equipment.
Abstract:
A method of manufacturing a semiconductor device, forms connection pads electrically connected to integrated circuit portion formed in a semiconductor substrate, lays an insulating film and a protective film one over another, forms sub-lines electrically connected to the connection pads on the protective film, forms a coating film covering the sub-lines and the protective film, sticks a dry film onto the coating film, forms external connection electrodes externally connectable and electrically connected to the sub-lines, and removes the dry film and forms a sealing layer covering the coating film and side surfaces of the external connection electrodes.
Abstract:
A method of manufacturing a semiconductor device, forms connection pads electrically connected to integrated circuit portion formed in a semiconductor substrate, lays an insulating film and a protective film one over another, forms sub-lines electrically connected to the connection pads on the protective film, forms a coating film covering the sub-lines and the protective film, sticks a dry film onto the coating film, forms external connection electrodes externally connectable and electrically connected to the sub-lines, and removes the dry film and forms a sealing layer covering the coating film and side surfaces of the external connection electrodes.
Abstract:
A method of manufacturing a semiconductor device includes a process of forming a gate electrode having a metallic silicide layer on a semiconductor substrate, a process of decreasing boundaries of grains on the surface of the metallic silicide layer, at least a portion of which is exposed, and a process of forming spacers comprising an oxide film on the side wall of the gate electrode; in this order. Thus, abnormal oxidation of the metallic silicide layer is avoided.
Abstract:
In a process for fabricating a nonvolatile semiconductor memory of the tunneling type, when tunnel windows are formed in an oxide film on a semiconductor substrate, the oxide film is etched first by a dry etching process, then by a wet etching process. The dry etching process quickly removes most of the oxide material in the window areas, without enlarging the windows laterally, but stops short of the substrate, thereby avoiding damage to the substrate surface. The wet etching process takes the windows the rest of the way down to the semiconductor substrate surface. Since only a small amount of oxide needs to be wet-etched, lateral enlargement of the windows by the wet etching process can be tightly controlled, and small tunnel windows can be formed without the need for extravagantly sophisticated fabrication equipment.
Abstract:
A method for forming an insulating film is provided which is capable of inhibiting spontaneous growth of a silicon oxide film formed on a silicon substrate and an increase in thickness of a film caused by exposure to an atmosphere. After having allowed a silicon dioxide layer with a predetermined thickness to grow on a surface of a silicon crystal, a surface of the silicon dioxide is exposed to organic gas containing no hydroxyl group or is exposed to ammonia gas.