Abstract:
A substrate processing apparatus and a substrate processing method, with which a resist can be removed satisfactorily from the substrate and a processing solution used for removing the resist can be recycled, are provided. The substrate processing apparatus includes: a substrate holding means holding a substrate; a peroxosulfuric acid generating means generating a peroxosulfuric acid using sulfuric acid; a mixing means mixing the peroxosulfuric acid generated by the peroxosulfuric acid generating means and sulfuric acid of higher temperature and higher concentration than the sulfuric acid used in the peroxosulfuric acid generating means; and a discharging means discharging, toward the substrate held by the substrate holding means, the mixed solution of the peroxosulfuric acid and the sulfuric acid mixed by the mixing means as a processing solution for removing a resist from the substrate.
Abstract:
An inventive substrate treatment method is performed by a substrate treatment apparatus including a plate having an opposed surface to be kept in opposed spaced relation to one surface of a substrate for treating the substrate with a treatment liquid, and includes: a pre-supply liquid filling step of supplying a pre-supply liquid into a space defined between the one surface of the substrate and the plate through a spout which is provided in the opposed surface in opposed relation to the center of the substrate, and filling the space with the pre-supply liquid, the pre-supply liquid having a smaller contact angle with respect to the substrate and the plate than the treatment liquid; a treatment liquid replacing step of, after a liquid-filled state is established in the space filled with the pre-supply liquid, supplying the treatment liquid into the space to replace the pre-supply liquid present in the space with the treatment liquid while keeping the space in the liquid-filled state; and a treatment liquid contacting step of, after the replacement of the pre-supply liquid, filling the space with the treatment liquid to cause the treatment liquid to contact the one surface of the substrate.
Abstract:
The invention provides modified HSV vectors that exhibit enhanced entry of cells, either through direct infection and/or lateral spread. In one aspect, HSV vectors of the present invention can directly infect cells through interaction with cell proteins other than typical mediators of HSV infection. In another aspect, the invention provides an HSV vector, which exhibits lateral spread in cells typically resistant to HSV lateral spread, such as cells lacking gD receptors. The invention further provides DNA encoding mutant forms of the HSV gB and gH glycoproteins, stocks of the inventive virus, and methods for effecting viral targeting and efficient entry of cells. The invention also pertains to the use of the inventive vectors for treating cancers.
Abstract:
The invention provides modified HSV vectors that exhibit enhanced entry of cells, either through direct infection and/or lateral spread. In one aspect, HSV vectors of the present invention can directly infect cells through interaction with cell proteins other than typical mediators of HSV infection. In another aspect, the invention provides an HSV vector, which exhibits lateral spread in cells typically resistant to HSV lateral spread, such as cells lacking gD receptors. The invention further provides DNA encoding mutant forms of the HSV gB and gH glycoproteins, stocks of the inventive virus, and methods for effecting viral targeting and efficient entry of cells. The invention also pertains to the use of the inventive vectors for treating cancers.
Abstract:
The present invention provides a semiconductor wafer comprising an insulated board of sapphire or the like having translucency, which is provided with a positioning orientation flat at a peripheral portion thereof, and a silicon thin film formed over the entire one surface of the insulated board. In the semiconductor wafer, ions are implanted in an area containing the orientation flat at a peripheral portion of the silicon thin film to amorphize silicon. Thus, the translucency at the amorphized spot is eliminated and accurate positioning using the conventional optical sensor can be performed.
Abstract:
The present invention provides a semiconductor wafer comprising an insulated board of sapphire or the like having translucency, which is provided with a positioning orientation flat at a peripheral portion thereof, and a silicon thin film formed over the entire one surface of the insulated board. In the semiconductor wafer, ions are implanted in an area containing the orientation flat at a peripheral portion of the silicon thin film to amorphize silicon. Thus, the translucency at the amorphized spot is eliminated and accurate positioning using the conventional optical sensor can be performed.
Abstract:
Some of the members constituting a semiconductor element are formed from α-Si and an HSG forming process is implemented to form hemispherical polysilicon grains at some of the members formed from α-Si. Thus, a semiconductor device that is achieved without requiring a great number of manufacturing steps such as film formation and etching, facilitates control of the individual steps and assures reliable electrical connection between the members and a method of manufacturing such a semiconductor device are provided.
Abstract:
A first insulating layer is formed on semiconductor substrate, and a trench is formed in the first insulating layer. An amorphous silicon layer doped with impurities is formed on a side and bottom walls of the trench. Next, a resist material is partially filled in the trench so that an upper portion of the amorphous silicon layer is exposed. The exposed portion is implanted with impurity ions. After removal of the resist material, the amorphous silicon layer is heat treated so as to grow hemispherical grains on its surface.
Abstract:
A method for forming an insulating film is provided which is capable of inhibiting spontaneous growth of a silicon oxide film formed on a silicon substrate and an increase in thickness of a film caused by exposure to an atmosphere. After having allowed a silicon dioxide layer with a predetermined thickness to grow on a surface of a silicon crystal, a surface of the silicon dioxide is exposed to organic gas containing no hydroxyl group or is exposed to ammonia gas.
Abstract:
This invention relates to a novel imidazo[1,5-a]pyrimidine derivatives and process for their preparation.Moreover, it relates to novel imidazo[1,5-a]pyrimidine derivatives and salts thereof having antifungal activities, and process for their preparation.