Abstract:
An insulating film layer is formed between a channel region of an MOS element formed in a monocrystal silicon layer of an SOS substrate in which the monocrystal silicon layer is laminated on a sapphire substrate, and the sapphire substrate, thereby to bring a stress state of the monocrystal silicon layer on the insulating film layer into a tensile stress state.
Abstract:
A method for forming an insulating film is provided which is capable of inhibiting spontaneous growth of a silicon oxide film formed on a silicon substrate and an increase in thickness of a film caused by exposure to an atmosphere. After having allowed a silicon dioxide layer with a predetermined thickness to grow on a surface of a silicon crystal, a surface of the silicon dioxide is exposed to organic gas containing no hydroxyl group or is exposed to ammonia gas.
Abstract:
A field effect transistor and a method for forming the field effect transistor are made up of a source region which is formed on the substrate, a drain region which is formed on the substrate, a stepped portion which is formed in the substrate between the source region and the drain region, a gate insulating film which is formed on the stepped portion of the substrate, and a gate electrode which is formed on the gate insulating film, wherein, a thickness of the gate insulating film near the drain region, which is less than that of the gate insulating film on a channel region defined in the substrate between the source region and the drain region. Accordingly, the field effect transistor and a method for forming the field effect transistor can prevent degradation of transistor characteristics because of a hot carrier effect.
Abstract:
In a semiconductor memory device formed on a semiconductor substrate (11), a first FET (21) is formed on a substrate. A first polysilicon film (13) serves as a gate electrode of this first FET (21). A second polysilicon film (16) is formed over the first polysilicon film (13), being separated by an insulating film (15). A third polysilicon film (20) is formed on the top and sides of the second polysilicon film (16). The third polysilicon film (20) has an impurity-doped region (19). A lower end (20a) of the third polysilicon film (20) is in contact with the first polysilicon film (13). The first, second and third polysilicon films (13, 16, 20) form a second FET (22), with the second polysilicon film (16) forming a gate electrode, and that part of the third polysilicon film (20) which is between the impurity-doped region (19) and the contacting end (20a) and adjacent to the second polysilicon film (16 ) forming a channel.
Abstract:
A non-volatile semiconductor memory device includes a semiconductor substrate, and a source and a drain of a MOS transistor formed on one surface of the semiconductor substrate and spaced about from each other. First, second and third gates are formed on one side of the substrate through an insulating film and between the source and the drain of the MOS transistor. This memory device has one transistor construction and can be fabricated simply and finely.
Abstract:
A semiconductor device includes a silicon carbide substrate having a channel region formed on a surface thereof; a silicon layer formed on the channel region; a gate insulation film formed on the silicon layer; and a gate electrode formed on the gate insulation film. A method of producing a semiconductor device includes the steps of: forming a silicon layer on a surface of a silicon carbide substrate; forming a gate insulation film on the silicon layer to form a laminated structure of the silicon layer and the gate insulation film; and forming a gate electrode on the gate insulation film.
Abstract:
A nonvolatile memory includes a charge transfer layer, having a low barrier height, between the floating gate electrode and the control gate electrode. Accordingly, the nonvolatile memory avoids the problem in which the number of program and erasure cycles is decreased as a result of degradation of a tunnel oxide film.
Abstract:
An insulating film layer is formed between a channel region of an MOS element formed in a monocrystal silicon layer of an SOS substrate in which the monocrystal silicon layer is laminated on a sapphire substrate, and the sapphire substrate, thereby to bring a stress state of the monocrystal silicon layer on the insulating film layer into a tensile stress state.
Abstract:
In order to achieve a method for analyzing the compositional distribution of deposited film adhering to the internal surface of a contact hole having a diameter in the deep submicron order, primary ions 18 are radiated into the surface 12a of an insulating film 12 where the contact hole 14 is formed to generate secondary ions 20. The primary ions are radiated into the surface of the insulating film from a constant diagonal direction. Then, mass spectrometry is performed on the resulting secondary ions to detect the compositional distribution of the deposited film 16 formed at the internal surface of the contact hole. Thus, the compositional distribution of the deposited film is ascertained over the depth-wise direction of the contact hole.