Abstract:
The method according to the invention consists in providing a wafer having a bottom layer, a top first sacrificial layer and an insulating layer, structuring the first sacrificial layer to form a three dimensional structure onto which a first structural layer is deposited to define a corresponding three dimensional structure on the bottom surface of the first structural layer. The method consists also in forming a second three dimensional structure on the upper surface of the first structural layer.
Abstract:
The present invention relates to a microcarrier comprising at least a detection surface for performing an assay, said detection surface comprising a first area being functionalized with a first functional group for detecting at least a chemical and/or biological interaction, said first area being designed for providing a first signal. The microcarrier is characterized in that the detection surface further comprises a second area being designed for providing a second signal different from the first signal, said second signal being emitted during the assay. Thus, information about the presence of the at least a chemical and/or biological interaction is provided by a comparison of the first signal and the second signal.
Abstract:
The present invention relates to a method for performing a chemical and/or a biological assay comprising the following successive steps of: a) providing an assay device with a microchannel having an inlet and an outlet and further comprising restricting means designed to restrict the movement toward the outlet of microparticles introduced in the microchannel while letting a fluid to flow through the restricting means, b) introducing microparticles in the microchannel via the inlet, c) restricting the movement of said microparticles in the microchannel toward the outlet using restricting means, d) flowing a fluid sample through the microchannel, e) performing a biological and/or chemical read-out on each microparticle, the method further comprising the steps of: f) moving the microparticles in the microchannel, and g) repeating successively the steps d) and e).
Abstract:
The method according to the invention consists in providing a wafer having a bottom layer, a top first sacrificial layer and an insulating layer, structuring the first sacrificial layer to form a three dimensional structure onto which a first structural layer is deposited to define a corresponding three dimensional structure on the bottom surface of the first structural layer. The method consists also in forming a second three dimensional structure on the upper surface of the first structural layer.
Abstract:
A method for performing a chemical and/or a biological assay including the following successive steps of: a) providing an assay device with a microchannel having an inlet and an outlet and restricting means for restricting movement toward the outlet of microparticles introduced in the microchannel while letting a fluid to flow through the restricting means, b) introducing microparticles in the microchannel via the inlet, c) restricting the movement of said microparticles in the microchannel toward the outlet using the restricting means, d) flowing a fluid sample through the microchannel, and e) performing a biological and/or chemical read-out on each microparticle. The method also includes the steps of: f) moving the microparticles in the microchannel, and g) repeating successively the steps d) and e).
Abstract:
The present invention relates to a method for producing microcarriers, the method comprising the steps of providing a wafer having a bottom layer, a top layer and an insulating layer, structuring the top layer to define at least one three-dimensional structure on the top surface of the top layer, etching away the top layer to delineate lateral walls of bodies of the microcarriers, applying a continuous polymer layer over the top surface of the bodies of the microcarriers, removing the bottom layer and the insulating layer, structuring the bottom surfaces of the bodies of the microcarriers to define at least one three-dimensional structure on the bottom surface of each body, and removing the polymer layer to release the microcarriers.
Abstract:
The present invention relates to a method for producing microcarriers, the method comprising the steps of providing a wafer having a bottom layer, a top layer and an insulating layer, structuring the top layer to define at least one three-dimensional structure on the top surface of the top layer, etching away the top layer to delineate lateral walls of bodies of the microcarriers, applying a continuous polymer layer over the top surface of the bodies of the microcarriers, removing the bottom layer and the insulating layer, structuring the bottom surfaces of the bodies of the microcarriers to define at least one three-dimensional structure on the bottom surface of each body, and removing the polymer layer to release the microcarriers.
Abstract:
The present invention relates to a method for producing microcarriers comprising the following steps: (a) providing a wafer having a sandwich structure comprising a bottom layer, a top layer and an insulating layer located between said bottom and top layers, (b) etching away the top layer to delineate lateral walls of bodies of the microcarriers, (c) depositing a first active layer at least on a top surface of the bodies, (d) applying a continuous polymer layer over the first active layer, (e) etching away the bottom layer and the insulating layer, (f) removing the polymer layer to release the microcarriers.
Abstract:
The present invention relates to a method for injecting microparticles into a microfluidic channel by means of injecting means, said microfluidic channel opening out on a sidewall of an inlet well, the method comprising the steps of: a) positioning the injecting means tip above said sidewall and at a predetermined distance (d) therefrom, and b) injecting the microparticles into said inlet well so that they come into contact with said sidewall during injection, the sidewall being tilted so that at least a portion of the microparticles included in the injected liquid sample slides on the sidewall and enters the microfluidic channel.
Abstract:
The present invention relates to a method for producing microcarriers comprising the following steps: (a) providing a wafer having a sandwich structure comprising a bottom layer, a top layer and an insulating layer located between said bottom and top layers, (b) etching away the top layer to delineate lateral walls of bodies of the microcarriers, (c) depositing a first active layer at least on a top surface of the bodies, (d) applying a continuous polymer layer over the first active layer, (e) etching away the bottom layer and the insulating layer, (f) removing the polymer layer to release the microcarriers.