摘要:
Secondary electrons emitted from a sample (W) by an electron beam irradiation is deflected by a beam separator (77), and is deflected again in a perpendicular direction by an aberration correction electrostatic deflector (711) to form a magnified image on the principal plane of an auxiliary lens (712). The secondary electron beam diverged from the auxiliary lens (712) passes through axial chromatic aberration correction lenses (714-717) and images on a principal plane of an auxiliary lens (718) for a magnifying lens (719). The magnified image is formed in a position spaced apart from the optical axis. Therefore, when the secondary electron beam diverged from the auxiliary lens (712) is incident on the axial chromatic aberration correction lenses without any change, large abaxial aberration occurs. To avoid it, the auxiliary lens (712) is used to form the image of an NA aperture (724) in substantially a middle (723) in the light axis direction of the axial chromatic aberration correction lenses (714-717).
摘要:
Disclosed is an electron beam apparatus, in which a plurality of electron beams is formed from electrons emitted from an electron gun 21 and used to irradiate a sample surface via an objective lens 28, said apparatus comprising: a beam separator 27 for separating a secondary electron beams emanating from respective scanned regions on the sample from the primary electron beams; a magnifying electron lens 31 for extending a beam space between adjacent beams in the separated plurality of secondary electron beams; a fiber optical plate 32 for converting the magnified plurality of secondary electron beams to optical signals by a scintillator and for transmitting the signals; a photoelectric conversion device 35 for converting the optical signal to an electric signal; an optical zoom lens 33 for focusing the optical signal from the scintillator into an image on the photoelectric conversion device; and a rotation mechanism 36 for rotating the photoelectric conversion device 35 around the optical axis.
摘要:
A sample is evaluated at a high throughput by reducing axial chromatic aberration and increasing the transmittance of secondary electrons. Electron beams emitted from an electron gun 1 are irradiated onto a sample 7 through a primary electro-optical system, and electrons consequently emitted from the sample are detected by a detector 12 through a secondary electro-optical system. A Wien filter 8 comprising a multi-pole lens for correcting axial chromatic aberration is disposed between a magnification lens 10 in the secondary electro-optical system and a beam separator 5 for separating a primary electron beam and a secondary electron beam, for correcting axial chromatic aberration caused by an objective lens 14 which comprises an electromagnetic lens having a magnetic gap defined on a sample side.
摘要:
Disclosed is an electron beam apparatus, in which a plurality of electron beams is formed from electrons emitted from an electron gun 21 and used to irradiate a sample surface via an objective lens 28, said apparatus comprising: a beam separator 27 for separating a secondary electron beams emanating from respective scanned regions on the sample from the primary electron beams; a magnifying electron lens 31 for extending a beam space between adjacent beams in the separated plurality of secondary electron beams; a fiber optical plate 32 for converting the magnified plurality of secondary electron beams to optical signals by a scintillator and for transmitting the signals; a photoelectric conversion device 35 for converting the optical signal to an electric signal; an optical zoom lens 33 for focusing the optical signal from the scintillator into an image on the photoelectric conversion device; and a rotation mechanism 36 for rotating the photoelectric conversion device 35 around the optical axis.
摘要:
An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
摘要:
An electron beam inspection system of the image projection type includes a primary electron optical system for shaping an electron beam emitted from an electron gun into a rectangular configuration and applying the shaped electron beam to a sample surface to be inspected. A secondary electron optical system converges secondary electrons emitted from the sample. A detector converts the converged secondary electrons into an optical image through a fluorescent screen and focuses the image to a line sensor. A controller controls the charge transfer time of the line sensor at which the picked-up line image is transferred between each pair of adjacent pixel rows provided in the line sensor in association with the moving speed of a stage for moving the sample.
摘要:
The present invention provides an electron beam apparatus for evaluating a sample surface, which has a primary electro-optical system for irradiating a sample with a primary electron beam, a detecting system, and a secondary electro-optical system for directing secondary electron beams emitted from the sample surface by the irradiation of the primary electron beam to the detecting system.
摘要:
A substrate inspection apparatus 1-1 (FIG. 1) of the present invention performs the following steps of: carrying a substrate “S” to be inspected into an inspection chamber 23-1; maintaining a vacuum in said inspection chamber; isolating said inspection chamber from a vibration; moving successively said substrate by means of a stage 26-1 with at least one degree of freedom; irradiating an electron beam having a specified width; helping said electron beam reach to a surface of said substrate via a primary electron optical system 10-1; trapping secondary electrons emitted from said substrate via a secondary electron optical system 20-1 and guiding it to a detecting system 35-1; forming a secondary electron image in an image processing system based on a detection signal of a secondary electron beam obtained by said detecting system; detecting a defective location in said substrate based on the secondary electron image formed by said image processing system; indicating and/or storing said defective location in said substrate by CPU 37-1; and taking said completely inspected substrate out of the inspection chamber. Thereby, the defect inspection on the substrate can be performed successively with high level of accuracy and efficiency as well as with higher throughput.
摘要:
The present invention provides an electron beam apparatus for evaluating a sample surface, which has a primary electro-optical system for irradiating a sample with a primary electron beam, a detecting system, and a secondary electro-optical system for directing secondary electron beams emitted from the sample surface by the irradiation of the primary electron beam to the detecting system.
摘要:
An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.