Abstract:
The engine starting device includes a starter motor, a pinion portion, a pushing mechanism for pushing a pinion gear of the pinion portion to a position at which the pinion gear comes into meshing engagement with a ring gear, and an integrated switch for operating a motor-energization switch to pull a plunger after the pinion gear is pushed, by configuring a switch for actuating the pushing mechanism and turning ON/OFF an energization current to the starter motor by a single plunger coil. When a restart request is issued after an engine stop is requested and therefore the integrated switch is placed in an ON state, operation timing of the pushing mechanism and coil-operation timing of the plunger coil are set so that the starter motor avoids operating until the pinion gear comes into contact or meshing engagement with the ring gear.
Abstract:
A pinion gear unit includes a rotation member which rotates according to the rotation of a output rotation shaft, a first pinion gear which is fit to the rotation member through a first serration unit, rotates with the rotation member according to the rotation of the output rotation shaft, and moves with the rotation member if the pinion gear unit moves towards an engagement location by a pushing mechanism, to be initially engaged with an engine starting gear, and a second pinion gear which is fit to the rotation member to be adjacent to the first pinion gear through a second serration unit, rotates with the rotation member according to the rotation of the output rotation shaft, and moves with the rotation member if the pinion gear unit further moves towards the engagement location, to be engaged with the engine starting gear later than the first pinion gear, in a state where the first pinion gear is engaged with the engine starting gear, and the fitting is performed by the first and second serration units so that phases of teeth of the first pinion gear and teeth of the second pinion gear in a circumferential direction correspond with each other.
Abstract:
It is possible to obtain an engine starting device in which, at the time of initial engagement of a first pinion gear and an engine starting gear, in a case where the first pinion gear collides with the engine starting gear, the first pinion gear is inclined with respect to the second pinion gear, a void having a predetermined size for expanding the inclined state is formed between a surface of an end surface portion of the first pinion gear on the side of an end surface portion of the second pinion gear, and a surface of an end surface portion of the second pinion gear on the side of the end surface portion of the first pinion gear, even in a case where any one of the rotation speed of the engine starting gear and the rotation speed of the pinion gear is larger than the other, rotation synchronization of the engine starting gear and the pinion gear and phase focusing of the teeth between the engine starting gear and the pinion gear is further rapidly and further reliably performed at the time when the engine starting gear and the pinion gear is abutted to each other, noise is decreased, and shortening of the life due to abrasion can be suppressed.
Abstract:
The engine starting device includes a starter motor, a pinion portion, a pushing mechanism for pushing a pinion gear of the pinion portion to a position at which the pinion gear comes into meshing engagement with a ring gear, and an integrated switch for operating a motor-energization switch to pull a plunger after the pinion gear is pushed, by configuring a switch for actuating the pushing mechanism and turning ON/OFF an energization current to the starter motor by a single plunger coil. When a restart request is issued after an engine stop is requested and therefore the integrated switch is placed in an ON state, operation timing of the pushing mechanism and coil-operation timing of the plunger coil are set so that the starter motor avoids operating until the pinion gear comes into contact or meshing engagement with the ring gear.
Abstract:
The objective of the present invention is to dampen operating sounds of an electromagnetic drive mechanism used for a variable displacement to reduce an individual difference depending on apparatus due to the control mechanism in a high-pressure fuel supply pump change over time or installation tolerance.To achieve the above objective, the present invention is configured such that before the electromagnetic drive mechanism supplies a drive force to a plunger which is electromagnetically driven by the electromagnetic drive mechanism, another displacement force situates the plunger in a specific position. When compared to an occasion where the plunger is displaced all strokes by a magnetic biasing force, the above configuration is able to reduce the force of impact on a member (for example, valve body) mounted to the plunger and a restricting member, thereby damping the collision noise. Furthermore, since an extra member, such as a damping member, is not required, individual difference depending on apparatus do not easily occur.
Abstract:
A high pressure fuel pump for an internal combustion engine having a cylinder, a plunger slidably fitted in the cylinder and a seal mechanism for blocking fuel leakage from an end of a sliding portion between the cylinder and the plunger and also for preventing an lubricant for a driving mechanism of the plunger from entering into the cylinder from the end of the sliding portion of the cylinder and the plunger. A holder surrounding the end of the sliding portion of the cylinder and the plunger is provided. The seal mechanism comprises two mutually independent seal devices mounted with a specific spacing in a longitudinal direction from the end of the sliding portion of the cylinder and the plunger along a circumference of the plunger. The two seal devices are held on the circumference of the plunger by the holder surrounding the end of the sliding portion of the cylinder and the plunger while keeping the specific spacing.
Abstract:
A CDMA transmitter-receiver capable of varying a transmission rate of a voice signal coded on a sample by sample basis. A voice encoder encodes, on a sample by sample basis, a voice signal to be transmitted. An information distributor divides a coded digital signal, and supplies the divided parts to an error correcting encoder and an interleaver in accordance with transmission rate information so that the number of bits to be subjected to the error correcting coding varies in response to a transmission rate the transmission rate information indicates, thereby varying the total number of transmitted bits. Digital signals with and without subjected to the error correcting coding are transmitted to a party through components from the interleaver to an RF transmitting stage. A transmission power controller controls the transmission power of an RF transmitted signal output from the RF transmitting stage in response to the transmission rate information fed from the controller.
Abstract:
The engine starter includes: a starter motor; a pinion unit (30) for sliding in an axial direction on an output shaft of the starter motor; and a ring gear (100) which meshes with a pinion pushed out by a push-out mechanism (60) and receives a transmission of a rotational force of the starter motor to thereby start an engine, and the pinion portion (30) includes a pinion gear divided in the axial direction into two pinion gears which are a first pinion gear (35) having a protruded shape for synchronization, for first colliding with the ring gear upon start of meshing with the ring gear, and a second pinion gear (34) for serving to transmit the rotational force after the meshing.
Abstract:
Engine starting device, including: a crank signal generation unit (13); and an engine control unit (10) for identifying a predetermined crank position of a crankshaft, and starting the engine, in which the engine control unit estimates, in a course of stopping the engine when a stop condition for the engine is established, based on an engine rpm at the identified predetermined crank position, whether or not the engine rotates backward before reaching the predetermined crank position for a next time, and after estimating that the engine rotates backward, sets an inhibition range which is prescribed from a starter drive inhibition start timing to a starter drive inhibition reset timing, and a permission range which is other than the inhibition range, and when the restart condition is established during rotation of the engine, inhibits restart in the inhibition range and carries out the restart in the permission range.