摘要:
A narrow gap or unevenness of a surface of a specimen is measured by utilizing the tunnel effect of a light wave reflected at a boundary plane on the condition of total reflection. A laser beam emitted from a laser source is reflected at a surface of a prism on the condition of total reflection in terms of geometrical optics. If a gap between the surface of the prism and the specimen is about the wavelength of the laser beam, part of the laser beam is transmitted into the specimen, and the intensity of the transmitted beam depends on the gap width. A portion of the laser beam is reflected at the boundary plane back into the prism. Therefore, the gap can be measured by measuring the transmittance of the laser beam and comparing the same with the calculated relation between the transmittance and the gap calculated in advance. In practice, the gap width is determined by measuring intensity of the reflected laser beam in the presence of the gap and comparing it to the intensity of the reflected laser beam in the absence of the gap, i.e, when the specimen surface is more than several wavelengths away from the reflecting surface.
摘要:
The invention provides a device which utilizes the tunnel effect occuring upon a condition of geometric total reflection, for measuring a narrow gap and surface unevenness of a specimen with high precision. An optical device 40 includes a semi-conductor laser 42, a photodiode 43, and a waveguide layer 44 is formed on a semi-conductor substrate 41 by epitaxial growth. A reflecting surface 44b of the waveguide layer 44 is parallel to the plane of the semi-conductor substrate. A laser beam emitted from the semi-conductor laser is reflected from the reflecting surface 44b under a condition of total reflection in geometrical optics. When the gap between the reflecting surface and the specimen is less than or equal to about the wavelength of the laser beam, part of the laser beam is transmitted into the specimen. The intensity of the transmitted light, which is calculated corresponding to the intensity of the reflected light, depends on the dimension of the gap. In the practice of the invention, the relationship between the transmittance and the dimension of the gap is previously obtained, and the dimension of the gap is determined corresponding to the transmittance measured. A narrow gap and the surface unevenness are accurately and precisely measured.
摘要:
Reflectance measurement with two monochromatic light beams having different wavelengths is used to obtain curves respective representing the relationship between an insulation film thickness of a semiconductor wafer and the gap between a test electrode and a semiconductor wafer surface. The C-V curve measurement at a fixed gap determines a total capacity of the gap and the insulation film, and a straight line representing the relationship between the gap and the insulation film thickness is obtained from the total capacity. An intersection where the two curves and the straight line cross gives the true values of the gap and the insulation film thickness. Other possible methods include: one for executing the C-V curve measurement and the reflectance measurement with two linear polarized light beams having identical wavelengths but different polarization directions; one for executing the reflectance measurement with three monochromatic light beams that differ in at least wavelength and/or polarization direction; and one for executing the reflectance measurement and the C-V curve measurement for two different gaps.
摘要:
A method of measuring C-V characteristics of a semiconductor wafer without forming an electrode on an oxide film thereof. An electrode 201 for C-V measurement is held above a semiconductor wafer 100 across a gap Ge of 1 micrometer or less, and a total capacity including that of the gap Ge is detected. The gap Ge is measured by utilizing the tunneling effect observed in total reflection of light wave. Parallelism of the electrode 201 to the wafer is adjusted by measuring the width of the gap or measuring the capacity of the gap at three different locations on the periphery of the electrode 201.
摘要:
A heat processing apparatus for manufacturing semiconductors is constructed such that an airtightly sealing part is provided at the tubular end having equal diameter to that of a main body of the apparatus, a ring shaped packing is wound on the outer circumference of a cylindrical tube adjacent to the end to be pressed between a pair of ring bodies which are formed with tapered edges of opposite inner sides, an inner tube having an equal diameter to that of the tube is connected with the end of the cylindrical tube through a cushioning material, on the outer circumference of the inner tube an outer tube is constructed integrally with one of the ring bodies, opening ends of both the inner and the outer tubes are adapted to be closed with a lid, and to the outer tube there are provided an exhausting tube for exhausting gas in the cylindrical tube and a gas introducing tube which interrupts an open air from the cylindrical tube with the flow of inert gas which flows when the lid is opened, and exhausting holes which connect with the exhausting tube and a plurality lines of gas holes for forming "gas curtain" are provided to the inner tube.
摘要:
Provided are a processing method for forming division originating points in a workpiece and a laser processing apparatus performing the method, which are capable of reducing light absorption in a processing trail, increasing light extraction efficiency from sapphire, and performing high speed processing. A pulsed laser beam is irradiated to a workpiece so that irradiation regions for each of unit pulsed beams of the pulsed laser beam of ultra-short pulse are formed discretely in the workpiece, and cleavage or parting of the workpiece is sequentially generated between the irradiation regions by a shock or a stress when each of unit pulsed beam is irradiated at an irradiation point, to thereby form originating points for division in the workpiece.
摘要:
In a breaking operation, a substrate is moved so that a blade can be situated in line with a scribe line, and the blade is lowered to break the substrate. After the breaking, the blade is raised. Then, the substrate is moved along its surface while taking an image of the substrate by using a camera after the breaking. Moreover, the blade is lowered to break the substrate. After the breaking, the blade is raised. Then, the substrate is moved along its surface while performing image processing concurrently. After the movement of the substrate, the position of the substrate is corrected so that the following scribe line to be cut for breaking can be situated immediately below the blade. In this way, the time required for breaking the substrate formed with a multiplicity of scribe lines into pieces can be shortened.
摘要:
In a breaking operation, a substrate is moved so that a blade can be situated in line with a scribe line, and the blade is lowered to break the substrate. After the breaking, the blade is raised. Then, the substrate is moved along its surface while taking an image of the substrate by using a camera after the breaking. Moreover, the blade is lowered to break the substrate. After the breaking, the blade is raised. Then, the substrate is moved along its surface while performing image processing concurrently. After the movement of the substrate, the position of the substrate is corrected so that the following scribe line to be cut for breaking can be situated immediately below the blade. In this way, the time required for breaking the substrate formed with a multiplicity of scribe lines into pieces can be shortened.