摘要:
In an improved system for recovering heat from a combustion gas produced by burning wastes, the combustion gas or combustible gas produced by partial burning of the wastes subjected to dust filtration in a temperature range of 450-650° C. at a filtration velocity of 1-5 cm/sec under a pressure of from −5 kPa (gage) to 5 MPa before heat recovery is effected. The dust filtration is preferably performed using a filter medium which may or may not support a denitration catalyst. Heat recovery is preferably effected using a steam superheater. The dust-free gas may partly or wholly be reburnt with or without an auxiliary fuel to a sufficiently high temperature to permit heat recovery. The combustion furnace may be a gasifying furnace which, in turn, may be combined with a melting furnace. If desired, the reburning to a higher temperature may be performed under pressure and the obtained hot combustion gas is supplied to a gas turbine to generate electricity, followed by introduction of the exhaust gas from the gas turbine into a steam superheater for further heat recovery. The system can raise the temperature of superheated steam to a sufficient level to enhance the efficiency of power generation without possibility of corrosion of heat transfer pipes by the combustion gas or combustible gas.
摘要:
In an improved system for recovering heat from a combustion gas produced by burning wastes, the combustion gas or combustible gas produced by partial burning of the wastes subjected to dust filtration in a temperature range of 450-650° C. at a filtration velocity of 1-5 cm/sec under a pressure of from −5 kPa (gage) to 5 MPa before heat recovery is effected. The dust filtration is preferably performed using a filter medium which may or may not support a denitration catalyst. Heat recovery is preferably effected using a steam superheater. The dust-free gas may partly or wholly be reburnt with or without an auxiliary fuel to a sufficiently high temperature to permit heat recovery. The combustion furnace may be a gasifying furnace which, in turn, may be combined with a melting furnace. If desired, the reburning to a higher temperature may be performed under pressure and the obtained hot combustion gas is supplied to a gas turbine to generate electricity, followed by introduction of the exhaust gas from the gas turbine into a steam superheater for further heat recovery. The system can raise the temperature of superheated steam to a sufficient level to enhance the efficiency of power generation without possibility of corrosion of heat transfer pipes by the combustion gas or combustible gas.
摘要:
In an improved system for recovering heat from a combustion gas produced by burning wastes, the combustion gas or combustible gas produced by partial burning of the wastes subjected to dust filtration in a temperature range of 450-650.degree. C. at a filtration velocity of 1-5 cm/sec under a pressure of from -5 kPa (gage) to 5 MPa before heat recovery is effected. The dust filtration is preferably performed using a filter medium which may or may not support a denitration catalyst. Heat recovery is preferably effected using a steam superheater. The dust-free gas may partly or wholly be reburnt with or without an auxiliary fuel to a sufficiently high temperature to permit heat recovery. The combustion furnace may be a gasifying furnace which, in turn, may be combined with a melting furnace. If desired, the reburning to a higher temperature may be performed under pressure and the obtained hot combustion gas is supplied to a gas turbine to generate electricity, followed by introduction of the exhaust gas from the gas turbine into a steam superheater for further heat recovery. The system can raise the temperature of superheated steam to a sufficient level to enhance the efficiency of power generation without possibility of corrosion of heat transfer pipes by the combustion gas or combustible gas.
摘要:
In an improved system for recovering heat from a combustion gas produced by burning wastes, the combustion gas or combustible gas produced by partial burning of the wastes subjected to dust filtration in a temperature range of 450-650.degree. C. at a filtration velocity of 1-5 cm/sec under a pressure of from -5 kPa (gage) to 5 MPa before heat recovery is effected. The dust filtration is preferably performed using a filter medium which may or may not support a denitration catalyst. Heat recovery is preferably effected using a steam superheater. The dust-free gas may partly or wholly be reburnt with or without an auxiliary fuel to a sufficiently high temperature to permit heat recovery. The combustion furnace may be a gasifying furnace which, in turn, may be combined with a melting furnace. If desired, the reburning to a higher temperature may be performed under pressure and the obtained hot combustion gas is supplied to a gas turbine to generate electricity, followed by introduction of the exhaust gas from the gas turbine into a steam superheater for further heat recovery. The system can raise the temperature of superheated steam to a sufficient level to enhance the efficiency of power generation without possibility of corrosion of heat transfer pipes by the combustion gas or combustible gas.
摘要:
In an improved system for recovering heat from a combustion gas produced by burning wastes, the combustion gas or combustible gas produced by partial burning of the wastes subjected to dust filtration in a temperature range of 450-650° C. at a filtration velocity of 1-5 cm/sec under a pressure of from −5 kPa (gage) to 5 MPa before heat recovery is effected. The dust filtration is preferably performed using a filter medium which may or may not support a denitration catalyst. Heat recovery is preferably effected using a steam superheater. The dust-free gas may partly or wholly be reburnt with or without an auxiliary fuel to a sufficiently high temperature to permit heat recovery. The combustion furnace may be a gasifying furnace which, in turn, may be combined with a melting furnace. If desired, the reburning to a higher temperature may be performed under pressure and the obtained hot combustion gas is supplied to a gas turbine to generate electricity, followed by introduction of the exhaust gas from the gas turbine into a steam superheater for further heat recovery. The system can raise the temperature of superheated steam to a sufficient level to enhance the efficiency of power generation without possibility of corrosion of heat transfer pipes by the combustion gas or combustible gas.
摘要:
In an improved system for recovering heat from a combustion gas produced by burning wastes, the combustion gas or combustible gas produced by partial burning of the wastes subjected to dust filtration in a temperature range of 450-650° C. at a filtration velocity of 1-5 cm/sec under a pressure of from −5 kPa (gage) to 5 MPa before heat recovery is effected. The dust filtration is preferably performed using a filter medium which may or may not support a denitration catalyst. Heat recovery is preferably effected using a steam superheater. The dust-free gas may partly or wholly be reburnt with or without an auxiliary fuel to a sufficiently high temperature to permit heat recovery. The combustion furnace may be a gasifying furnace which, in turn, may be combined with a melting furnace. If desired, the reburning to a higher temperature may be performed under pressure and the obtained hot combustion gas is supplied to a gas turbine to generate electricity, followed by introduction of the exhaust gas from the gas turbine into a steam superheater for further heat recovery. The system can raise the temperature of superheated steam to a sufficient level to enhance the efficiency of power generation without possibility of corrosion of heat transfer pipes by the combustion gas or combustible gas.
摘要:
A combustion method and apparatus in which combustible matter, e.g., waste matter, coal, etc., is gasified to produce a combustible gas containing a sufficiently large amount of combustible component to melt the ash by its own heat. A fluidized-bed furnace (2) has an approximately circular horizontal cross-sectional configuration. A moving bed (9), in which a fluidized medium settles and diffuses, is formed in the central portion of the furnace, and a fluidized bed (10), in which the fluidized medium is actively fluidized, is formed in the peripheral portion in the furnace. The fluidized medium is turned over to the upper part of the moving bed (9) from the upper part of the fluidized bed (10), thus circulating through the two beds. Combustible matter (11) is cast into the upper part of the moving bed (9) and gasified to form a combustible gas while circulating, together with the fluidized medium. The amount of oxygen supplied to the fluidized-bed furnace (2) is set so as to be the same contained in an amount of air not higher than 30% of the theoretical amount of combustion air. The temperature of the fluidized bed (10) is maintained at 450° C. to 650° C. so that the combustible gas produced contains a large amount of combustible component. The combustible gas and fine particles produced in the fluidized-bed furnace (2) are supplied to a melt combustion furnace where they are burned at high temperature, and the resulting ash is melted.
摘要:
A combustion apparatus in which combustible matter, e.g., waste matter, coal, etc., is gasified to produce a combustible gas containing a sufficiently large amount of combustible component to melt ash by its own heat. A fluidized-bed furnace has an approximately circular horizontal cross-sectional configuration. A moving bed, in which a fluidized medium settles and diffuses, is formed in the central portion of the furnace, and a fluidized bed, in which the fluidized medium is actively fluidized, is formed in a peripheral portion in the furnace. The fluidized medium is turned over to the upper part of the moving bed from the upper part of the fluidized bed, thus circulating through the two beds. Combustible matter is cast into the upper part of the moving bed and gasified to form a combustible gas while circulating, together with the fluidized medium. The amount of oxygen supplied to the fluidized-bed furnace is set so as to be not higher than 30% of the theoretical amount of oxygen necessary to combust the combustible matter. The temperature of the fluidized bed is maintained at 450.degree. C. to 650.degree. C. so that the combustible gas produced contains a large amount of combustible component.
摘要:
A combustion method and apparatus in which combustible matter, e.g., waste matter, coal, etc., is gasified to produce a combustible gas containing a sufficiently large amount of combustible component to melt ash by its own heat. A fluidized-bed furnace has an approximately circular horizontal cross-sectional configuration. A moving bed, in which a fluidized medium settles and diffuses, is formed in the central portion of the furnace, and a fluidized bed, in which the fluidized medium is actively fluidized, is formed in the peripheral portion in the furnace. The fluidized medium is turned over to the upper part of the moving bed from the upper part of the fluidized bed, thus circulating through the two beds. Combustible matter is cast into the upper part of the moving bed and gasified to form a combustible gas while circulating, together with the fluidized medium. The amount of oxygen supplied to the fluidized-bed furnace is set so as to be not higher than 30% of the theoretical amount of oxygen required for combustion. The temperature of the fluidized bed is maintained at 450.degree. C. to 650.degree. C. so that the combustible gas produced contains a large amount of combustible component. The combustible gas and fine particles produced in the fluidized-bed furnace are supplied to a melt combustion furnace where they are burned at high temperature, and the resulting ash is melted.
摘要:
A combustion method and apparatus in which combustible matter, e.g., waste matter, coal, etc., is gasified to produce a combustible gas containing a sufficiently large amount of combustible component to melt ash by its own heat. A fluidized-bed furnace has an approximately circular horizontal cross-sectional configuration. A moving bed, in which a fluidized medium settles and diffuses, is formed in a central portion of the furnace, and a fluidized bed, in which the fluidized medium is actively fluidized, is formed in a peripheral portion in the furnace. The fluidized medium is turned over to the upper part of the moving bed from the upper part of the fluidized bed, thus circulating through the two beds. Combustible matter is cast into the upper part of the moving bed and gasified to form a combustible gas while circulating, together with the fluidized medium. The amount of oxygen supplied to the fluidized-bed furnace is set so as to be not higher than 30% of the theoretical amount of oxygen necessary to combust the combustible matter. The temperature of the fluidized bed is maintained at 450.degree. C. to 650.degree. C. so that the combustible gas produced contains a large amount of combustible component. The combustible gas and fine particles produced in the fluidized-bed furnace are supplied to a melt combustion furnace where they are burned at high temperature, and the resulting ash is melted.