Abstract:
An idle mode UE can RACH to a cell different from the cell paging the UE. The UE can be allocated additional time to respond to all cells in the neighborhood to identify the cell in which to RACH. Interference cancellation can occur at different rates based on whether the UE is in connected mode or idle mode. The time to respond to the page can be a function of a paging cycle. Additionally, a variable bias may promote early handoff to lower power cells and late handoff to high power cells.
Abstract:
Certain aspects of the present disclosure relate to techniques for power control and user multiplexing for coordinated multi-point (CoMP) transmission and reception in heterogeneous networks (HetNet).
Abstract:
Certain aspects relate to methods and apparatus for avoiding and/or escaping cell range expansion (CRE) in a heterogeneous network (HetNet). A user equipment (UE) may detect the occurrence of one or more conditions while the UE is in a region of cell range expansion (CRE) in which the UE may be handed over from a first cell of a first power class type to a second cell of a second power class type, the second power class type being lower than the first power class type. The UE may take action to stop being served by the second cell or avoid being handed over to the second cell in response to the detection.
Abstract:
Certain aspects of the present disclosure relate to techniques for power control and user multiplexing for coordinated multi-point (CoMP) transmission and reception in heterogeneous networks (HetNet).
Abstract:
Systems and methods are disclosed for control-data multiplexing as well as control-data decoupling. In one embodiment, a semi-static approach is disclosed, wherein the upper layer(s) are configured such that each user equipment uses either control-data multiplexing or control-data decoupling. Additionally or alternatively, a dynamic approach is disclosed, in which one bit is added to the DCI format which indicates whether the UE is using control-data multiplexing or control-data coupling.
Abstract:
A wireless communication method includes allocating physical uplink control channel (PUCCH) data in first slot to a first orthogonal cover code (OCC). The method also includes allocating PUCCH data in a second slot of the same subframe to a different orthogonal cover code (OCC). Another method includes mapping PUCCH resources to physical resource blocks based on a user equipment (UE) specific signaling parameter (e.g., a resource index) and a number of symbols in a slot of a subframe.
Abstract:
Bits for acknowledgement (ACK) and/or negative acknowledgement (NAK) may be allocated based on whether a special subframe configuration in a TDD configuration permits downlink transmission. For carrier aggregation, ACK/NAK bits may be allocated only to special subframes in component carriers (CCs) which permit downlink transmission. Also, for example, ACK/NAK bits may be allocated to all CC special subframes if a single CC is configured to allow downlink transmission on one of its special subframes. ACK/NAK bits may also be allocated to all special subframes.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for blind detection of cell-specific reference signals. Methods and apparatus are provided for detecting a cell-specific reference signal (CRS) in an orthogonal frequency division multiplexed (OFDM) symbol by a user equipment (UE). The method generally includes predicting a current channel response of a current OFDM symbol based on a channel response of at least one previous OFDM symbol, estimating a noise power level of the current OFDM symbol, forming a log likelihood ratio (LLR) of two detection hypotheses based on the predicted current channel response and the estimated noise power level, comparing the LLR to a pre-determined threshold, and determining that at least one CRS is present in the current OFDM symbol based on the comparison.