Abstract:
The present disclosure relates to LDS materials comprising a first coating layer comprising a first LDS additive, and a base substrate, wherein the coating layer contacts the base substrate. Articles formed from the LDS materials are also disclosed that include a conductive path and a metal layer deposited on the activated path. Methods for making the LDS materials and corresponding articles are also described.
Abstract:
The present disclosure relates to blended thermoplastic compositions comprising: a) from about 20 wt % to about 80 wt % of a polycarbonate polymer component; b) from about 5 wt % to about 30 wt % of a polycarbonate-polysiloxane copolymer component; c) from about 1 wt % to about 20 wt % of a laser direct structuring additive component; and d) from about 0.02 wt % to about 5 wt % of a metal component; wherein the combined weight percent value of all components does not exceed about 100 wt %; and wherein all weight percent values are based on the total weight of the composition.
Abstract:
The present disclosure relates to blended thermoplastic compositions comprising: a) from about 20 wt % to about 80 wt % of a polycarbonate polymer component; b) from about 5 wt % to about 30 wt % of a polycarbonate-polysiloxane copolymer component; c) from about 1 wt % to about 20 wt % of a laser direct structuring additive component; and d) from about 0.02 wt % to about 5 wt % of a metal component; wherein the combined weight percent value of all components does not exceed about 100 wt %; and wherein all weight percent values are based on the total weight of the composition.
Abstract:
The present disclosure relates to a polymer composition comprising a polycarbonate polymer, a laser direct structuring additive capable of being activated by electromagnetic radiation and thereby forming elemental metal nuclei, and a reflection additive. Also disclosed is a method for making the disclosed polymer composition and an article of manufacture comprising the disclosed polymer composition.