Abstract:
An optical layered composite includes: a substrate having a front face, a back face, a thickness ds between the front face and the back face, and a refractive index ns; and a coating applied to the front face, the coating having two regions, the two regions being a region A and a region B. The region A comprises one or more coating layers, each of which satisfies one or both of the criteria: a thickness below 5 nm; or a refractive index of 1.6 or more. The region B comprises one or more coating layers, each of which satisfies one or both of the criteria: a thickness below 5 nm; or a refractive index below 1.6.
Abstract:
The present invention relates to a glass article with low optical loss. The present invention also relates to the use of the glass article, in particular as optical waveguide, for example as light guide plate, in particular in augmented reality devices.
Abstract:
A scratch-resistant amorphous and transparent AlSiN cover layer on a glass or glass ceramic substrate is provided. The cover layer has a low surface roughness and has sliding properties with respect to pots and other items. The cover layer is transparent in the visible light range and also largely transparent in the infrared range and has good chemical resistance to salted water burn-in.
Abstract:
An electrical storage system is provided that has a thickness of less than 2 mm, where the system includes at least one sheet-type discrete element, the sheet-type discrete element exhibiting high resistance to an attack of alkali metals or alkali metal ions, in particular lithium, wherein the sheet-type discrete element has a low content of TiO2, the TiO2 content preferably being less than 2 wt %, preferably less than 0.5 wt %, and preferably free of TiO2.
Abstract:
An optical layered composite includes: a substrate having a front face, a back face, a thickness ds between the front face and the back face and a refractive index ns; and a coating applied to the front face. The coating comprises one or more coating layers. For at least one wavelength λg in the range from 390 nm to 700 nm, the coating satisfies one of the following criterion: nc ns, and
Abstract:
A package for encapsulating a functional area against an environment includes a base substrate and a cover substrate, the base substrate together with the cover substrate defining at least part of the package or defining the package, and furthermore including the at least one functional area provided in the package, and a blocking way for reducing permeation between the environment and the functional area. The package may include at least one laser bonding line, and the substrates of the package can be hermetically joined to one another by the at least one laser bonding line, and the laser bonding line has a height (HL) perpendicular to its bonding plane.
Abstract:
The present disclosure relates to a layered optical composite, in particular for use in an augmented reality device. In particular, the disclosure relates to a layered optical composite and a process for its preparation, a device comprising the layered optical composite and a process for its preparation, and the use of a layered optical composite in an augmented reality device. The present disclosure relates to a layered optical composite comprising: a. a substrate having a front face and a back face, b. a coating comprising: i. a type T layer, and ii. a type C region comprising one or more type C layers; in which the substrate has: i. a thickness tG in the range from 0.2 to 1.2 mm; ii. a refractive index nG at a wavelength λ in the range from 1.6 to 2.4; and iii. an optical absorption coefficient KG at the wavelength λ of less than 10 cm−1; in which the type C layers individually and independently have: i. a thickness tC in the range from 9 to 250 nm; ii. a refractive index nC at the wavelength λ in the range from 1.35 to 2.43; and iii. an optical absorption coefficient KC at the wavelength λ of less than 106 cm−1; in which at least one type C layer has: i. an optical absorption coefficient at the wavelength λ of at least 100 cm−1; in which the type T layer has: i. a thickness tT in the range from 50 to 300 nm; ii. a refractive index nT at the wavelength λ in the range from 1.35 to 1.96; and iii. an optical absorption coefficient KT of less than 80 cm−1; in which the type C region and the type T layer are each superimposed over one face of the substrate with the type C region further than the type T layer from the substrate; in which λ is in the range from 430 to 670 nm.
Abstract:
An electrical storage system is provided that has a thickness of less than 2 mm, which includes at least one sheet-type discrete element. The sheet-type discrete element exhibits high resistance against an attack of transition metals or transition metal ions, in particular titanium, wherein the sheet-type discrete element contains titanium. The invention also relates to a sheet-type discrete element for use in an electrical storage system, which exhibits high resistance to the attack of transition metals or of transition metal ions, in particular titanium.
Abstract:
A substrate having a coating for enhanced scratch resistance is provided. The coating includes at least one high refractive index transparent hard material layer. The hard material layer includes crystalline aluminum nitride having a hexagonal crystal structure that exhibits a predominant (001) preferred orientation of the hexagonal symmetry.
Abstract:
A substrate is provided with an abrasion resistance antireflection coating. The coated substrate includes a multilayer antireflection coating on at least one side. The coating has layers with different refractive indices, wherein higher refractive index layers alternate with lower refractive index layers. The layers having a lower refractive index are formed of silicon oxide with a proportion of aluminum, with a ratio of the amounts of aluminum to silicon is greater than 0.05, preferably greater than 0.08, but with the amount of silicon predominant relative to the amount of aluminum. The layers having a higher refractive index include a silicide, an oxide, or a nitride.