Abstract:
An electronic semiconductor device including a semiconductor body having a first structural region and a second structural region, which extends on the first structural region and houses a drain region; a body region, which extends into the second structural region; a source region, which extends into the body region; and a gate electrode, which extends over the semiconductor body for generating a conductive channel between the source region and the drain region. The device includes a first conductive trench extending through, and electrically insulated from, the second structural region on one side of the gate electrode; and a second conductive trench extending through the source region, the body region, and right through the second structural region on an opposite side of the gate electrode, electrically insulated from the second structural region and electrically coupled to the body region and to the source region.
Abstract:
An electronic semiconductor device comprising: a semiconductor body, having a first side and a second side opposite to one another and including a first structural region facing the second side, and a second structural region extending over the first structural region and facing the first side; a body region extending in the second structural region at the first side; a source region extending inside the body region; an LDD region facing the first side of the semiconductor body; and a gate electrode. The device comprises: a trench dielectric region extending through the second structural region a first trench conductive region immediately adjacent to the trench dielectric region; and a second trench conductive region in electrical contact with the body region and with the source region. An electrical contact at the second side of the semiconductor body is in electrical contact with the drain region via the first structural region.
Abstract:
The device is formed in a casing including a support, a spacer body, and a mirror element fixed together. A light-emitting element and a light-receiving element are arranged on a bearing surface of the support and face a reflecting surface of the mirror element. The light-emitting element is configured to generate infrared radiation, and the light-receiving element is configured to receive light radiation reflected by the reflecting surface. The spacer body has an emission opening housing the light-emitting element and a reception opening housing the light-receiving element; the reception opening comprises a radiation-limitation portion configured to enable entry of reflected light radiation having an angle, with respect to a normal to the bearing surface, of less than a preset value.
Abstract:
A micro-heater element for a MEMS sensor device, envisages, in a single conductive layer: an outer ring, defining inside it a window; a heat-diffusion structure, arranged within the window, separated from the outer ring by a first separation gap; and connection elements, arranged between the heat-diffusion structure and the outer ring, and designed to connect the heat-diffusion structure to the outer ring. The outer ring is designed to dissipate energy upon passage of an electric current, and the heat-diffusion structure is designed to distribute, within the micro-heater element, the heat that is transferred by the outer ring through the connection elements.
Abstract:
A sensor of volatile substances includes: a first electrode structure and a second electrode structure capacitively coupled, comb-fingered, and arranged coplanar in a plane; and a sensitive layer, of a sensitive material that is permeable to a volatile substance and has electrical permittivity depending upon a concentration of the volatile substance absorbed by the sensitive material. The sensitive layer extends from opposite sides of the plane.
Abstract:
A sensor of volatile substances includes: a first electrode structure and a second electrode structure capacitively coupled, comb-fingered, and arranged coplanar in a plane; and a sensitive layer, of a sensitive material that is permeable to a volatile substance and has electrical permittivity depending upon a concentration of the volatile substance absorbed by the sensitive material. The sensitive layer extends from opposite sides of the plane.
Abstract:
Methods form an electronic semiconductor device that includes a body having a first side and a second side opposite to one another and including a first structural region facing the second side, and a second structural region extending over the first structural region and facing the first side. A body region extends in the second structural region at the first side. A source region extends inside the body region and a lightly-doped drain region faces the first side of the body. A gate electrode is formed over the body region. A trench dielectric region extends through the second structural region in a first trench conductive region immediately adjacent to the trench dielectric region. A second trench conductive region is in electrical contact with the body region and source region. An electrical contact on the body is in electrical contact with the drain region through the first structural region.
Abstract:
A sensor of volatile substances includes: a first electrode structure and a second electrode structure capacitively coupled, comb-fingered, and arranged coplanar in a plane; and a sensitive layer, of a sensitive material that is permeable to a volatile substance and has electrical permittivity depending upon a concentration of the volatile substance absorbed by the sensitive material. The sensitive layer extends from opposite sides of the plane.
Abstract:
The photodetector is formed in a silicon carbide body formed by a first epitaxial layer of an N type and a second epitaxial layer of a P type. The first and second epitaxial layers are arranged on each other and form a body surface including a projecting portion, a sloped lateral portion, and an edge portion. An insulating edge region extends over the sloped lateral portion and the edge portion. An anode region is formed by the second epitaxial layer and is delimited by the projecting portion and by the sloped lateral portion. The first epitaxial layer forms a cathode region underneath the anode region. A buried region of an N type, with a higher doping level than the first epitaxial layer, extends between the anode and cathode regions, underneath the projecting portion, at a distance from the sloped lateral portion as well as from the edge region.
Abstract:
The photodetector is formed in a silicon carbide body formed by a first epitaxial layer of an N type and a second epitaxial layer of a P type. The first and second epitaxial layers are arranged on each other and form a body surface including a projecting portion, a sloped lateral portion, and an edge portion. An insulating edge region extends over the sloped lateral portion and the edge portion. An anode region is formed by the second epitaxial layer and is delimited by the projecting portion and by the sloped lateral portion. The first epitaxial layer forms a cathode region underneath the anode region. A buried region of an N type, with a higher doping level than the first epitaxial layer, extends between the anode and cathode regions, underneath the projecting portion, at a distance from the sloped lateral portion as well as from the edge region.