Abstract:
A method for displaying information by an electronic device is provided. The method includes displaying a first information display area on a touch screen in response to a first user input received through a first part in some areas of the touch screen including the first part and a second part connected or adjacent to the first part, displaying a second information display area on the touch screen in response to a second user input received through the second part, displaying first information received from outside of the electronic device in the first information display area, the first information being associated with first contact information, and displaying second information received from the outside of the electronic device in the second information display area, the second information being associated with second contact information.
Abstract:
A built-in antenna device for an electronic device for communication used in a multi-band is provided. The built-in antenna device includes a PCB, a first antenna radiator disposed on the PCB, and a second antenna radiator which has the same power feeding point as the first antenna radiator and is disposed at a housing of the electronic device, wherein the first antenna radiator and the second antenna radiator are configured to operate at different frequency bands.
Abstract:
A built-in antenna for an electronic device is provided. The built-in antenna includes a substrate, a 1st antenna radiator with at least two radiating portions, a 2nd antenna radiator, and a switching means. The substrate has a conductive area and a non-conductive area. The 2nd antenna radiator is arranged within the non-conductive area of the substrate and fed by a Radio Frequency (RF) end of the substrate. The 2nd antenna radiator is configured to operate at a band different from at least one operating band of the 1st antenna radiator, and is fed by the RF end in a position adjacent the 1st antenna radiator. The switching means switches to selectively feed the 1st antenna radiator and the 2nd antenna radiator.
Abstract:
A hydrogen separation membrane including: a metal layer including the at least one Group 5 element; and a transition metal catalyst layer on the metal layer, the transition metal catalyst layer including at least one transition metal and at least one of phosphorus (P) or boron (B).
Abstract:
An electronic device having a heat radiator and a method for controlling the electronic device are provided. The electronic device includes a frame including at least one optical assembly and a structure configured to receive a portable electronic device including a display, wherein an image is on the display can be seen through the at least one optical assembly when the portable electronic device is in the structure, a wearing member connected to the frame and configured to be worn together with the frame on the head of a user, and a heat radiator configured to remove heat from a space between the display and the optical assembly to outside the electronic device when the portable electronic device is received in the structure and is turned on.
Abstract:
An antenna apparatus for a portable terminal which is light, thin, compact, and small. The antenna apparatus preferably includes a main board equipped with a power feeding part for feeding power and a ground surface for grounding the main board and at least one sub-board, each sub-board which has a ground surface and electrically communicates with the main board, wherein the ground surface of each sub-board receives power from the power feeding part of the main board and resonates.
Abstract:
A re-reconfigurable built-in antenna of a portable terminal is provided. The antenna includes an antenna radiator having a feeding pad electrically connected to a feeding portion of a main board of the terminal and at least one ground pad disposed in a position different from that of the feeding pad for selectively establishing an electrical connection to a ground portion of the terminal, and a switching element, commonly connected to the at least one ground pad of the antenna radiator, for selectively establishing an electrical connection to the ground portion by a switching operation. The antenna radiator changes a shape of the antenna radiator by using the selective electrical connection of the ground portion so as to have various operational frequency bands and radiation properties.
Abstract:
A separation membrane including: an alloy including a Group 5 element, Fe, and Al, wherein the alloy includes a body-centered cubic lattice structure.
Abstract:
A test fixture with hand simulation for securing a wireless terminal during a performance test is provided. The test fixture includes first and second dielectric parts adjustably spaced apart to adjust a distance of a housing space therebetween within which the wireless terminal is securable. The first and second dielectric parts simulating respective portions of a human hand holding the wireless terminal. The housing space is adjusted according to a size of the wireless terminal by adjusting a distance between portions of the first and second dielectric parts.
Abstract:
A built-in antenna for an electronic device is provided. The built-in antenna includes a substrate, a 1st antenna radiator with at least two radiating portions, a 2nd antenna radiator, and a switching means. The substrate has a conductive area and a non-conductive area. The 2nd antenna radiator is arranged within the non-conductive area of the substrate and fed by a Radio Frequency (RF) end of the substrate. The 2nd antenna radiator is configured to operate at a band different from at least one operating band of the 1st antenna radiator, and is fed by the RF end in a position adjacent the 1st antenna radiator. The switching means switches to selectively feed the 1st antenna radiator and the 2nd antenna radiator.