Abstract:
In a method of testing an interconnection substrate, a blocking condition of a reference light reflected from a probe having an intrinsic optical characteristic may be set. An electric field emitted from a test interconnection substrate having a plurality of circuits may change the intrinsic optical characteristics of the probe into test optical characteristics. Light may be irradiated to the probe having the test optical characteristics. The reference light reflected from the probe having the test optical characteristic may be blocked in accordance with the blocking condition. The remaining reflected light that may be due to an abnormal circuit may be detected.
Abstract:
According to various embodiments, an electronic device includes a housing configured to house a battery; a display configured to be disposed in the housing, to be exposed through a portion of the housing, and to be electrically connected to the battery; a motion detection sensor circuit configured to be disposed in the housing and to be electrically connected to the battery; a power management circuit configured to be disposed in the housing and to be electrically connected to the battery; and a processor configured to be functionally or electrically connected to the motion detection sensor circuit and the display and to be electrically connected to the power management circuit through a switch that is turned on when the processor is in a first mode and turned off when the processor is in a second mode, wherein, in the second mode, the motion detection sensor circuit detects a motion associated with the electronic device, and provides image data to the display in response to the detection of the motion. Other embodiments are also possible.
Abstract:
In a method of detecting a defect on a substrate, an incident beam may be radiated to a surface of the substrate to generate reflected light beams. A second harmonic generation (SHG) beam among the reflected light beams may be detected. The SHG beam may be generated by a defect on the substrate. A nano size defect may be detected by examining the SHG beam.
Abstract:
An electronic device includes an image capturing device and a processor electrically connected with the image capturing device, wherein the processor is configured to obtain a first portion of a video at a first capturing speed during a first period using the image capturing device, control a first notification to indicate obtaining a second portion of the video at a set second capturing speed when the second capturing speed is set as a speed of capturing the video based on a result of analyzing the first obtained portion, and obtain the second portion at the second capturing speed during a second period following the first period using the image capturing device.
Abstract:
A fabricating method of a semiconductor device includes providing a substrate having a first region and a second region, forming a plurality of first gates in the first region of the substrate, such that the first gates are spaced apart from each other at a first pitch, forming a plurality of second gates in the second region of the substrate, such that the second gates are spaced apart from each other at a second pitch different from the first pitch, implanting an etch rate adjusting dopant into the second region to form implanted regions, while blocking the first region, forming a first trench by etching the first region between the plurality of first gates, and forming a second trench by etching the second region between the plurality of second gates.
Abstract:
Provided is a method of controlling a display driver IC. The method includes controlling an application processor to operate in a frequency range, which is changed from an operating frequency range of a preset specification and is a range in which data noise is decreased, through a plurality of frequency noise filtering operations.
Abstract:
A fabricating method of a semiconductor device includes providing a substrate having a first region and a second region, forming a plurality of first gates in the first region of the substrate, such that the first gates are spaced apart from each other at a first pitch, forming a plurality of second gates in the second region of the substrate, such that the second gates are spaced apart from each other at a second pitch different from the first pitch, implanting an etch rate adjusting dopant into the second region to form implanted regions, while blocking the first region, forming a first trench by etching the first region between the plurality of first gates, and forming a second trench by etching the second region between the plurality of second gates.
Abstract:
An apparatus and method for supporting Peer-to-Peer (P2P) communications in a broadband wireless communication system are provided. A frame used by the terminal in P2P communications includes a plurality of P2P contention channels overlapping with a region for cellular communications and at least one P2P dedicated channel allocated by a base station only for the P2P communications. The method includes establishing a P2P connection with a correspondent terminal through the at least one P2P dedicated channel, and exchanging P2P communication data with the correspondent terminal through at least one of the plurality of P2P contention channels.
Abstract:
A display driving system includes a display driver integrated circuit, and the display driver integrated circuit includes a brightness calculating circuit, an image complexity calculating circuit, a weight calculating circuit and a look up table. The brightness calculating circuit calculates brightness of image data and generates brightness data. The image complexity calculating circuit calculates image complexity and generates weight data, based on a pattern of the image data. The weight calculating circuit receives brightness data and a weight data to generate brightness correction data.
Abstract:
An apparatus and method for resource allocation information transmission is provided. The method includes determining a search space for use in a second frequency band using resource allocation information of a first process detected in a first frequency band, detecting resource allocation information using the search space in the second frequency band, and when failing to decode received data according to the resource allocation information detected in the second frequency band, re-detecting resource allocation information of the first process in the second frequency band in a first time interval using the search space without detecting the resource allocation information of the first process in the first frequency band.