摘要:
A selective metal layer formation method, a capacitor formation method using the same, and a method of forming an ohmic layer on a contact hole and filling the contact hole using the same, are provided. A sacrificial metal layer is selectively deposited on a conductive layer by supplying a sacrificial metal source gas which deposits selectively on a semiconductor substrate having an insulating film and the conductive layer. Sacrificial metal atoms and a halide are formed, and the sacrificial metal layer is replaced with a deposition metal layer such as titanium Ti or platinum Pt, by supplying a metal halide gas having a halogen coherence smaller than the halogen coherence of the metal atoms in the sacrificial metal layer. If such a process is used to form a capacitor lower electrode or form an ohmic layer on the bottom of a contact hole, a metal layer can be selectively formed at a temperature of 500° C. or lower.
摘要:
A method for forming a metal interconnection filling a contact hole or a groove having a high aspect ratio, and a contact structure fabricated thereby. An interdielectric layer pattern, having a recessed region serving as a contact hole, a via hole or a groove, is formed on a semiconductor substrate. A barrier metal layer is formed on the entire surface of the resultant structure where the interdielectric layer pattern is formed. An anti-nucleation layer is selectively formed only on the non-recessed region of the barrier metal layer. The anti-nucleation layer is formed by forming a metal layer overlying the barrier metal layer in regions other than the recessed region, and then spontaneously oxidizing the metal layer in a vacuum. Also, the anti-nucleation layer may be formed by in-situ forming the barrier metal layer and the metal layer and then oxidizing the metal layer by an annealing process. Subsequently, a metal plug is selectively formed in the recessed region, surrounded by the barrier metal layer, thereby forming a metal interconnection for completely filling the contact hole or the groove having a high aspect ratio. A metal liner may be formed instead of the metal plug, followed by forming a metal layer filling the region surrounded by the metal liner, thereby forming a metal interconnection for completely filling the contact hole or groove having a high aspect ratio.
摘要:
Semiconductor films include insulating films including contact holes in semiconductor substrates, capacitors comprising lower electrodes formed on conductive material films in the contact holes, high dielectric films formed on the lower electrodes and upper electrodes formed on the high dielectric films, and barrier metal layers positioned between conductive materials in the contact holes and the lower electrodes, the barrier metal layers including metal layers formed in A-B-N structures in which a plurality of atomic layers are stacked by alternatively depositing reactive metal (A), an amorphous combination element (B) for preventing crystallization of the reactive metal (A) and nitrogen (N). The composition ratios of the barrier metal layers are determined by the number of depositions of the atomic layers.
摘要:
A semiconductor device fabrication apparatus is cleaned after a conductive layer is formed on a metal oxide layer of a substrate. The substrate is disposed on a heater in a process chamber of the apparatus, and the conductive layer is formed by introducing source gases into the chamber. Then the substrate is transferred out of the process chamber. At least one by-product of a reaction between the source gases and the metal oxide layer adheres to a surface inside the chamber, such as to a region or regions of the heater. Once the semiconductor substrate has been transferred outside the process chamber of the semiconductor fabrication apparatus, the by-product(s) is/are removed by evaporation. The by-product(s) can be evaporated using gas, such as one of the source gases, so that the process chamber can remain closed.
摘要:
A semiconductor device fabrication apparatus is cleaned after a conductive layer is formed on a metal oxide layer of a substrate. The substrate is disposed on a heater in a process chamber of the apparatus, and the conductive layer is formed by introducing source gases into the chamber. Then the substrate is transferred out of the process chamber. At least one by-product of a reaction between the source gases and the metal oxide layer adheres to a surface inside the chamber, such as to a region or regions of the heater. Once the semiconductor substrate has been transferred outside the process chamber of the semiconductor fabrication apparatus, the by-product(s) is/are removed by evaporation. The by-product(s) can be evaporated using gas, such as one of the source gases, so that the process chamber can remain closed.
摘要:
A method of manufacturing a semiconductor device includes forming an insulating pattern layer on a substrate, conformally forming a first conductive layer with a first thickness on the insulating pattern layer, wet etching the first conductive layer to have a second thickness that is less than the first thickness, and forming a second conductive layer on the first conductive layer after wet etching the first conductive layer. The second conductive layer includes a material that is different from a material included in the first conductive layer.
摘要:
A semiconductor device fabrication apparatus is cleaned after a conductive layer is formed on a metal oxide layer of a substrate. The substrate is disposed on a heater in a process chamber of the apparatus, and the conductive layer is formed by introducing source gases into the chamber. Then the substrate is transferred out of the process chamber. At least one by-product of a reaction between the source gases and the metal oxide layer adheres to a surface inside the chamber, such as to a region or regions of the heater. Once the semiconductor substrate has been transferred outside the process chamber of the semiconductor fabrication apparatus, the by-product(s) is/are removed by evaporation. The by-product(s) can be evaporated using gas, such as one of the source gases, so that the process chamber can remain closed.
摘要:
A semiconductor device fabrication apparatus is cleaned after a conductive layer is formed on a metal oxide layer of a substrate. The substrate is disposed on a heater in a process chamber of the apparatus, and the conductive layer is formed by introducing source gases into the chamber. Then the substrate is transferred out of the process chamber. At least one by-product of a reaction between the source gases and the metal oxide layer adheres to a surface inside the chamber, such as to a region or regions of the heater. Once the semiconductor substrate has been transferred outside the process chamber of the semiconductor fabrication apparatus, the by-product(s) is/are removed by evaporation. The by-product(s) can be evaporated using gas, such as one of the source gases, so that the process chamber can remain closed.
摘要:
A method of manufacturing a barrier metal layer uses atomic layer deposition (ALD) as the mechanism for depositing the barrier metal. The method includes supplying a first source gas onto the entire surface of a semiconductor substrate in the form of a pulse, and supplying a second source gas, which reacts with the first source gas, onto the entire surface of the semiconductor substrate in the form of a pulse. In a first embodiment, the pulses overlap in time so that the second source gas reacts with part of the first source gas physically adsorbed at the surface of the semiconductor substrate to thereby form part of the barrier metal layer by chemical vapor deposition whereas another part of the second source gas reacts with the first source gas chemically adsorbed at the surface of the semiconductor substrate to thereby form part of the barrier metal layer by atomic layer deposition. Thus, the deposition rate is greater than if the barrier metal layer were only formed by ALD. In the second embodiment, an impurity-removing gas is used to remove impurities in the barrier metal layer. Thus, even if the gas supply scheme is set up to only use ALD in creating the barrier metal layer, the deposition rate can be increased without the usual accompanying increase in the impurity content of the barrier metal layer.
摘要:
A method of forming a metal layer having excellent thermal and oxidation resistant characteristics using atomic layer deposition is provided. The metal layer includes a reactive metal (A), an element (B) for the amorphous combination between the reactive metal (A) and nitrogen (N), and nitrogen (N). The reactive metal (A) may be titanium (Ti), tantalum (Ta), tungsten (W), zirconium (Zr), hafnium (Hf), molybdenum (Mo) or niobium (Nb). The amorphous combination element (B) may be aluminum (Al), silicon (Si) or boron (B). The metal layer is formed by alternately injecting pulsed source gases for the elements (A, B and N) into a chamber according to atomic layer deposition to thereby alternately stack atomic layers. Accordingly, the composition ratio of a nitrogen compound (A—B—N) of the metal layer can be desirably adjusted just by appropriately determining the number of injection pulses of each source gas. According to the composition ratio, a desirable electrical conductivity and resistance of the metal layer can be accurately obtained. The atomic layers are individually deposited, thereby realizing excellent step coverage even in a complex and compact region. A metal layer formed by atomic layer deposition can be employed as a barrier metal layer, a lower electrode or an upper electrode in a semiconductor device.