摘要:
A method for manufacturing an SOI substrate in which crystal defects of a single crystal semiconductor layer are reduced even if a single crystal semiconductor substrate including crystal defects is used. A first oxide film is formed on a single crystal semiconductor substrate; the first oxide film is removed; a surface of the single crystal semiconductor substrate from which the first oxide film is removed is irradiated with laser light; a second oxide film is formed on the single crystal semiconductor substrate; an embrittled region is formed in the single crystal semiconductor substrate by irradiating the single crystal semiconductor substrate with ions through the second oxide film; bonding the second oxide film and the semiconductor substrate so as to face each other; and the single crystal semiconductor substrate is separated at the embrittled region by heat treatment to obtain a single crystal semiconductor layer bonded to the semiconductor substrate.
摘要:
An object is to provide an SOI substrate with excellent characteristics even in the case where a single crystal semiconductor substrate having crystal defects is used. Another object is to provide a semiconductor device using such an SOI substrate. A single crystal semiconductor layer is formed by an epitaxial growth method over a surface of a single crystal semiconductor substrate. The single crystal semiconductor layer is subjected to first thermal oxidation treatment to form a first oxide film. A surface of the first oxide film is irradiated with ions, whereby the ions are introduced to the single crystal semiconductor layer. The single crystal semiconductor layer and a base substrate are bonded with the first oxide film interposed therebetween. The single crystal semiconductor layer is divided at a region where the ions are introduced by performing thermal treatment, so that the single crystal semiconductor layer is partly left over the base substrate. The single crystal semiconductor layer left over the base substrate is irradiated with laser light. The single crystal semiconductor layer left over the base substrate is subjected to second thermal oxidation treatment to form a second oxide film. Then, the second oxide film is removed.
摘要:
A method for manufacturing an SOI substrate in which crystal defects of a single crystal semiconductor layer are reduced is provided. An oxide film containing halogen is formed on each of surfaces of a single crystal semiconductor substrate and of a semiconductor substrate provided with a single crystal semiconductor layer separated from the single crystal semiconductor substrate, whereby impurities that exist on the surfaces of and inside the substrates are decreased. In addition, the single crystal semiconductor layer provided over the semiconductor substrate is irradiated with a laser beam, whereby crystallinity of the single crystal semiconductor layer is improved and planarity is improved.
摘要:
An object is to provide an SOI substrate with excellent characteristics even in the case where a single crystal semiconductor substrate having crystal defects is used. Another object is to provide a semiconductor device using such an SOI substrate. A single crystal semiconductor layer is formed by an epitaxial growth method over a surface of a single crystal semiconductor substrate. The single crystal semiconductor layer is subjected to first thermal oxidation treatment to form a first oxide film. A surface of the first oxide film is irradiated with ions, whereby the ions are introduced to the single crystal semiconductor layer. The single crystal semiconductor layer and a base substrate are bonded with the first oxide film interposed therebetween. The single crystal semiconductor layer is divided at a region where the ions are introduced by performing thermal treatment, so that the single crystal semiconductor layer is partly left over the base substrate. The single crystal semiconductor layer left over the base substrate is irradiated with laser light. The single crystal semiconductor layer left over the base substrate is subjected to second thermal oxidation treatment to form a second oxide film. Then, the second oxide film is removed.
摘要:
One object of the present invention is to increase an aperture ratio of a semiconductor device. A pixel portion and a driver circuit are provided over one substrate. The first thin film transistor (TFT) in the pixel portion includes: a gate electrode layer over the substrate; a gate insulating layer over the gate electrode layer; an oxide semiconductor layer over the gate insulating layer; source and drain electrode layers over the oxide semiconductor layer; over the gate insulating layer, the oxide semiconductor layer, the source and drain electrode layers, a protective insulating layer which is in contact with part of the oxide semiconductor layer; and a pixel electrode layer over the protective insulating layer. The pixel portion has light-transmitting properties. Further, a material of source and drain electrode layers of a second TFT in the driver circuit is different from a material of those of the first TFT.
摘要:
It is an object to provide a method for manufacturing an SOI substrate in which crystal defects of a single crystal semiconductor layer are reduced even when a single crystal semiconductor substrate in which crystal defects exist is used. Such an SOI substrate can be manufactured through the steps of forming a single crystal semiconductor layer which has an extremely small number of defects over a single crystal semiconductor substrate by an epitaxial growth method; forming an oxide film on the single crystal semiconductor substrate by thermal oxidation treatment; introducing ions into the single crystal semiconductor substrate through the oxide film; bonding the single crystal semiconductor substrate into which the ions are introduced and a semiconductor substrate to each other; causing separation by heat treatment; and performing planarization treatment on the single crystal semiconductor layer provided over the semiconductor substrate.
摘要:
A semiconductor device including a thin film transistor which includes an oxide semiconductor layer and has high electric characteristics and reliability. Film deposition is performed using an oxide semiconductor target containing an insulator (an insulating oxide, an insulating nitride, silicon oxynitride, aluminum oxynitride, or the like), typically SiO2, so that the semiconductor device in which the Si-element concentration in the thickness direction of the oxide semiconductor layer has a gradient which increases in accordance with an increase in a distance from a gate electrode is realized.
摘要:
An object is to provide a semiconductor device including a thin film transistor which includes an oxide semiconductor layer and has high electric characteristics. An oxide semiconductor layer including SiOx is used in a channel formation region, and in order to reduce contact resistance with source and drain electrode layers formed using a metal material with low electric resistance, source and drain regions are provided between the source and drain electrode layers and the oxide semiconductor layer including SiOx. The source and drain regions are formed using an oxide semiconductor layer which does not include SiOx or an oxynitride film.
摘要:
There have been cases where transistors formed using oxide semiconductors are inferior in reliability to transistors formed using amorphous silicon. Thus, in the present invention, a semiconductor device including a highly reliable transistor formed using an oxide semiconductor is manufactured. An oxide semiconductor film is deposited by a sputtering method, using a sputtering target including an oxide semiconductor having crystallinity, and in which the direction of the c-axis of a crystal is parallel to a normal vector of the top surface of the oxide semiconductor. The target is formed by mixing raw materials so that its composition ratio can obtain a crystal structure.
摘要:
An object is to provide an oxide semiconductor layer having a novel structure which is preferably used for a semiconductor device. Alternatively, another object is to provide a semiconductor device using an oxide semiconductor layer having the novel structure. An oxide semiconductor layer includes an amorphous region which is mainly amorphous and a crystal region containing crystal grains of In2Ga2ZnO7 in a vicinity of a surface, in which the crystal grains are oriented so that the c-axis is almost vertical with respect to the surface. Alternatively, a semiconductor device uses such an oxide semiconductor layer.