摘要:
A propeller shaft has a metal pipe (1) with a joint element (3) joined at an end thereof. A fiber reinforced plastic layer (5) having a thickness that achieves a flexural rigidity satisfying a required natural bending frequency is formed on an outer circumference of the metal pipe (1) satisfying a static torsional strength required as a propeller shaft. The fiber reinforced plastic layer (5) has an interface strength between the reinforcing fiber and the matrix within a range of 20 to 200 MPa as measured by the microdroplet method.
摘要:
A power transmission shaft to be used mainly in vehicles comprises metal joint elements and a metal pipe connected to each other. A fiber reinforced plastic pipe having a large flexural modulus of elasticity is inserted into the metal pipe, thus forming a composite FRP shaft having flexural rigidity sufficient to serve as a power transmission shaft.
摘要:
A fiber reinforced plastic pipe is provided to prevent it from being damaged and make full use of its practical performance when the fiber reinforced plastic pipe, reduced in thickness and increased in diameter by pultrusion process, is reduced in the circumferential direction and inserted into a metal pipe. The fiber reinforced plastic pipe, reduced in thickness and increased in diameter by pultrusion process, includes a fiber bundle spun and aligned in the longitudinal direction, and circumferential reinforced fiber sheet provided at least on one of the outer and inner surface layers. The circumferential reinforced fiber sheet is inserted into the metal pipe to form a power transmission shaft such as an intermediate shaft for use with a propeller shaft or a drive shaft.
摘要:
A wheel support bearing assembly for supporting a wheel, which assembly includes an outer member having rolling surfaces and serving as a stationary member; an inner member having rolling surfaces; a plurality of rows of rolling elements interposed between the respective rolling surfaces; a magnetic encoder fitted to the outer peripheral surface of the inner member at a location adjacent one end thereof; an annular sensor holder made of resin and fitted to the outer member through a core metal, the annular sensor holder having a built-in magnetic sensor with an axial gap intervening between it and the magnetic encoder; and a sealing unit arranged on an outer side axially outwardly of the encoder and the sensor for sealing a space between the sensor holder and the inner member. The magnetic encoder includes a plastic magnetic encoder having a plastic magnet defining a to-be-detected portion.
摘要:
Provided is a mounting structure for a boot for a constant velocity universal joint, which is capable of ensuring a stable sealing performance at low cost. The resin boot (1) for the constant velocity universal joint includes a smaller-diameter end portion (2) and a larger-diameter end portion (3), each of which has a cylindrical shape. The smaller-diameter end portion (2) of the boot (1) is fixed to a shaft (17) constituting an inner member, and the larger-diameter end portion (3) is fixed to an outer joint member (11) serving as an outer member. An inner peripheral surface of the smaller-diameter end portion (2) of the boot (1) is integrally bonded to an outer peripheral surface of a boot-mounting portion (18) of the shaft (17) in an abutting state due to a physical interaction between a resin constituting the boot (1) and a metal constituting the shaft (17). Further, an inner peripheral surface of the larger-diameter end portion (3) of the boot (1) is integrally bonded to an outer peripheral surface of a boot-mounting portion (19) of the outer joint member (11) in an abutting state due to the physical interaction between the resin constituting the boot (1) and the metal constituting the outer joint member (11).
摘要:
A fluid dynamic bearing device in which leakage of a lubricating oil can be prevented is provided at low costs.A minute amount of an ink is provided on a first outer circumferential surface 8b2 of a bearing member 8 made of a sintered metal and a pore sealing portion 17 consisting of aggregates of a minute amount of the ink is formed to seal a portion of the fluid dynamic bearing device 1 of the bearing member 8 which is exposed to the air.
摘要:
The density of a multipolar magnet in this type of magnetic encoder, in particular, a multipolar magnet composed of a sintered compact, is made uniform.Samarium-iron based magnetic powder is used as magnetic powder, tin powder is used as non-magnetic metal powder, and a compressed molded body 114 is obtained by compression molding of a mixed powder of 20 to 90 wt % of samarium-iron based magnetic powder and 10 to 80 wt % of tin powder. The compressed molded body 114 is sintered at a temperature less than the melting point of the tin powder serving as the non-magnetic metal powder, so that the sintered compact is formed which serves as the multipolar magnet of the magnetic encoder 10.
摘要:
To substantially eliminate deficiencies such as portions of the resinous coating, where the film thickness is reduced considerably during the press-fitting, and to aim at providing a high productivity with a reduced cost and without the possibility of occurrence of rusting after a prolonged time of use under severe environmental conditions due to an excellent anticorrosive property, a magnetic encoder (10) includes a multipolar magnet (14) having a plurality of alternating magnetic poles alternating with each other in a direction circumferentially thereof, and a core metal (11) supporting the multipolar magnet (14). The multipolar magnet (14) is formed of a sintered element prepared by mixing and sintering a powdery mixture of a magnetic powder and a non-magnetic metallic powder. The multipolar magnet (14) is fixed on the core metal (1) by staking a portion of the core metal (11), and a sintered element/core metal assembly (21) fixed on the core metal (11) is surface treated to have with an anticorrosive resinous coating (22) for anticorrosive purpose. When the magnetic encoder is press-fitted on an encoder carrier member, one of a press-fitting punch and the magnetic encoder (10) is heated to a temperature within the range of 60 to 150° C.
摘要:
The magnetic encoder (17) includes a slinger (18) fixed to a rotation-side raceway ring of a bearing and including an outer side surface (22) opposed to the side of a sensor to detect rotation speed of the rotation-side raceway ring and having a surface roughness Ra: 0.3 to 3.0 μm, and an inner side surface (23) opposed to the side of a sealing member (16) to seal the bearing; a multipolar magnet (19) bonded to the outer side surface (22) through an adhesive; and a film (25b) formed on the inner side surface (23), having a surface roughness Ra of 0.3 μm or less, and being in sliding contact with the sealing member (16)
摘要:
A magnetic encoder which can be assembled having a thin-walled structure while securing an excellent detection sensitivity and which can provide an excellent moldability by suitably selecting materials. The magnetic encoder includes a multi-pole magnet having a plurality of opposite magnetic poles alternating in a direction circumferentially thereof, and a core metal for supporting the multi-pole magnet. The multi-pole magnet contains a powdery magnetic material mixed in an amount within the range of 20 to 90 vol. % relative to the total volume of the multi-pole magnet. The multi-pole magnet may be a sintered magnet.