Abstract:
The claimed invention provides a fusion polypeptide comprising a fibrous protein domain and a mineralization domain. The fusion is used to form an organic-inorganic composite. These organic-inorganic composites can be constructed from the nano- to the macro-scale depending on the size of the fibrous protein fusion domain used. In one embodiment, the composites can also be loaded with other compounds (e.g., dyes, drugs, enzymes) depending on the goal for the materials, to further enhance function. This can be achieved during assembly of the material or during the mineralization step in materials formation.
Abstract:
The present invention provides for concentrated aqueous silk fibroin solutions and an all-aqueous mode for preparation of concentrated aqueous fibroin solutions that avoids the use of organic solvents, direct additives, or harsh chemicals. The invention further provides for the use of these solutions in production of materials, e.g., fibers, films, foams, meshes, scaffolds and hydrogels.
Abstract:
The invention provides a method for the controlled assembly of layered silk fibroin coatings using aqueous silk fibroin material. The methods described herein can be used to coat substrates of any material, shape, or size. Importantly, the described methods enable control of the biomaterial surface chemistry, thickness, morphology and structure using layered thin film coatings, or bulk coatings. Furthermore, the methods can be performed in all water and do not require intensive chemical processing enabling controlled entrapment of labile molecules such as, drugs, cytokines, and even cells or viruses to generate functional coatings that can be used in a variety of applications.
Abstract:
Described herein are flexible and stretchable LED arrays and methods utilizing flexible and stretchable LED arrays. Assembly of flexible LED arrays alongside flexible plasmonic crystals is useful for construction of fluid monitors, permitting sensitive detection of fluid refractive index and composition. Co-integration of flexible LED arrays with flexible photodetector arrays is useful for construction of flexible proximity sensors. Application of stretchable LED arrays onto flexible threads as light emitting sutures provides novel means for performing radiation therapy on wounds.