Abstract:
A semiconductor process includes the following steps. Two gates are formed on a substrate. A recess is formed in the substrate beside the gates. A surface modification process is performed on a surface of the recess to modify the shape of the recess and change the contents of the surface.
Abstract:
A semiconductor process includes the steps of providing a substrate with fin structures formed thereon, performing an epitaxy process to grow an epitaxial structure on each fin structure, forming a conformal cap layer on each epitaxial structure, where adjacent conformal cap layers contact each other, and performing an etching process to separate contacting conformal cap layers.
Abstract:
A semiconductor process includes the following steps. Two gates are formed on a substrate. A recess is formed in the substrate beside the gates. A surface modification process is performed on a surface of the recess to modify the shape of the recess and change the contents of the surface.
Abstract:
A semiconductor process includes the following steps. Two gates are formed on a substrate. A recess is formed in the substrate beside the gates. A surface modification process is performed on a surface of the recess to modify the shape of the recess and change the contents of the surface.
Abstract:
A method of forming a semiconductor device is disclosed. At least one gate structure is provided on a substrate, wherein the gate structure includes a first spacer formed on a sidewall of a gate. A first disposable spacer material layer is deposited on the substrate covering the gate structure. The first disposable spacer material layer is etched to form a first disposable spacer on the first spacer. A second disposable spacer material layer is deposited on the substrate covering the gate structure. The second disposable spacer material layer is etched to form a second disposable spacer on the first disposable spacer. A portion of the substrate is removed, by using the first and second disposable spacers as a mask, so as to form two recesses in the substrate beside the gate structure. A stress-inducing layer is formed in the recesses.
Abstract:
A semiconductor process includes the following steps. Two gates are formed on a substrate. A recess is formed in the substrate beside the gates. A surface modification process is performed on a surface of the recess to modify the shape of the recess and change the contents of the surface.
Abstract:
An epitaxial process includes the following step. A recess is formed in a substrate. A seeding layer is formed to cover a surface of the recess. A buffer layer is formed on the seeding layer. An etching process is performed on the buffer layer to homogenize and shape the buffer layer. An epitaxial layer is formed on the homogenized flat bottom shape buffer layer.
Abstract:
A method for fabricating a semiconductor device, and a semiconductor device made with the method are described. In the method, a cavity is formed in a substrate, a first epitaxy process is performed under a pressure higher than 65 torr to form a buffer layer in the cavity, and a second epitaxy process is performed to form a semiconductor compound layer on the buffer layer in the cavity. In the semiconductor device, the ratio (S/Y) of the thickness S of the buffer layer on a lower sidewall of the cavity to the thickness Y of the buffer layer at the bottom of the cavity ranges from 0.6 to 0.8.
Abstract:
A method for fabricating a semiconductor device, and a semiconductor device made with the method are described. In the method, a cavity is formed in a substrate, a first epitaxy process is performed under a pressure higher than 65 torr to form a buffer layer in the cavity, and a second epitaxy process is performed to form a semiconductor compound layer on the buffer layer in the cavity. In the semiconductor device, the ratio (S/Y) of the thickness S of the buffer layer on a lower sidewall of the cavity to the thickness Y of the buffer layer at the bottom of the cavity ranges from 0.6 to 0.8.
Abstract:
A method of forming a semiconductor device is disclosed. At least one gate structure is provided on a substrate, wherein the gate structure includes a first spacer formed on a sidewall of a gate. A first disposable spacer material layer is deposited on the substrate covering the gate structure. The first disposable spacer material layer is etched to form a first disposable spacer on the first spacer. A second disposable spacer material layer is deposited on the substrate covering the gate structure. The second disposable spacer material layer is etched to form a second disposable spacer on the first disposable spacer. A portion of the substrate is removed, by using the first and second disposable spacers as a mask, so as to form two recesses in the substrate beside the gate structure. A stress-inducing layer is formed in the recesses.