Abstract:
A digital flashlamp controller, a flashlamp control system and a method of controlling a flashlamp bulb employing digital control electronics are provided herein. In one embodiment, the digital flashlamp controller includes: (1) a trigger interface configured to provide firing signals to control a trigger element for a flashlamp bulb and (2) digital electronics configured to generate the firing signals and control multiple pulsing of the flashlamp bulb.
Abstract:
The disclosure provides multimode configurable spectrometers, a method of operating a multimode configurable spectrometer, and an optical monitoring system. In one embodiment the multimode configurable spectrometer includes: (1) an optical sensor configured to receive an optical input and convert the optical input to electrical signals, wherein the optical sensor includes multiple active pixel regions for converting the optical input to the electrical signals, (2) conversion circuitry, having multiple selectable converting circuits, that is configured to receive and convert the electrical signals to a digital output according to a selected one of the selectable converting circuits, and (3) a sensor controller configured to set a synchronized operating mode to direct operation of the optical sensor and select, based on the synchronized operating mode, at least one of the selectable converting circuits to provide the digital output.
Abstract:
The disclosure provides multimode configurable spectrometers, a method of operating a multimode configurable spectrometer, and an optical monitoring system. In one embodiment the multimode configurable spectrometer includes: (1) an optical sensor configured to receive an optical input and convert the optical input to electrical signals, wherein the optical sensor includes multiple active pixel regions for converting the optical input to the electrical signals, and (2) conversion circuitry, having multiple selectable converting circuits, that is configured to receive and convert the electrical signals to a digital output according to a selected one of the selectable converting circuits.
Abstract:
The disclosure provides multimode configurable spectrometers, a method of operating a multimode configurable spectrometer, and an optical monitoring system. In one embodiment the multimode configurable spectrometer includes: (1) an optical sensor configured to receive an optical input and convert the optical input to electrical signals, wherein the optical sensor includes multiple active pixel regions for converting the optical input to the electrical signals, and (2) conversion circuitry, having multiple selectable converting circuits, that is configured to receive and convert the electrical signals to a digital output according to a selected one of the selectable converting circuits.
Abstract:
A flashlamp control system is provided with a capacitor that is statically electrically connected to the high voltage power supply, and a current sensing component is then electrically connected to the static capacitor and digital control electronics to monitor the charge current and/or the discharge current to static capacitor. A dynamically switchable capacitor electrically may also be connected to the high voltage power supply and digital control electronics for isolating the dynamically switchable capacitor from the high voltage power supply based on the monitored charge current and/or discharge current. One or more homogenizing element, comprise of an air gap, diffusing homogenizing element, imaging element, non-imaging element or light pipe homogenizing element, may be disposed in the light path proximate to the flashlamp, such as a multichannel distributor if present, to decrease the coefficient of variation of the optical signal, either temporally and spectrally, or both.
Abstract:
The disclosure provides an optical instrument, a method of converting an optical input to a digital signal output, and a spectrometer. In one embodiment, the optical instrument includes: (1) an optical sensor configured to receive an optical input and convert the optical input to electrical signals, and (2) a conversion system having conversion circuitry having multiple parallel signal channels that are configured to receive and modify the electrical signals to analog outputs, an analog switch configured to select one of the parallel signal channels according to an operating mode of the optical instrument, and an analog to digital converter configured to receive and convert the analog output from the selected parallel signal channel to a digital signal output.
Abstract:
The disclosure provides an optical instrument, a method of converting an optical input to a digital signal output, and a spectrometer. In one embodiment, the optical instrument includes: (1) an optical sensor configured to receive an optical input and convert the optical input to electrical signals, and (2) a conversion system having conversion circuitry having multiple parallel signal channels that are configured to receive and modify the electrical signals to analog outputs, an analog switch configured to select one of the parallel signal channels according to an operating mode of the optical instrument, and an analog to digital converter configured to receive and convert the analog output from the selected parallel signal channel to a digital signal output.
Abstract:
A digital flashlamp controller, a flashlamp control system and a method of controlling a flashlamp bulb employing digital control electronics are provided herein. In one embodiment, the digital flashlamp controller includes: (1) a trigger interface configured to provide firing signals to control a trigger element for a flashlamp bulb and (2) digital electronics configured to generate the firing signals and control multiple pulsing of the flashlamp bulb.
Abstract:
Emitted light from a pulsed plasma system is detected, amplified and digitized over a plurality of pulse modulation cycles to produce a digitized signal over the plurality of RF modulation periods, each of which contains an amount of random intensity variations. The individual signal periods are then mathematically combined to produce a stable local reference waveform signal that has decreased random intensity variations. One mechanism for creating a stable local reference waveform signal is by subdividing each of the individual signal periods into a plurality of subunits and the mathematically averaging the respective subunits within the modulation period to produce the stable local reference waveform signal for the modulation period. The stable local reference waveform signal can then be compared to other instantaneous waveform signals from the pulsed plasma system, or waveform parameters can be derived using various signal processing techniques such as Fourier analysis.