Abstract:
Provided is a resonator of a hybrid laser diode. The resonator includes: a substrate including a semiconductor layer where a hybrid waveguide, a multi-mode waveguide, and a single mode waveguide are connected in series; a compound semiconductor waveguide, provided on the hybrid waveguide of the semiconductor layer, having a tapered coupling structure at one end of the compound semiconductor waveguide, the tapered coupling structure overlapping the multi-mode waveguide partially; and a reflection part provided on one end of the single mode waveguide. The multi-mode waveguide has a narrower width than the hybrid waveguide and the single mode waveguide has a narrower width than the multi-mode waveguide.
Abstract:
Provided is a laser device. In the laser device, an active layer is connected to a stem core of a 1×2 splitter on a substrate, a first diffraction grating is coupled to a first twig core of the 1×2 splitter, and a second diffraction grating is coupled to a second twig core of the 1×2 splitter. An active layer-micro heater is designed to supply heat to the active layer. First and second micro heaters are designed to supply heats to the first and second diffraction gratings, respectively, thereby varying a Bragg wavelength.
Abstract:
Provided are a laser diode generating passive mode locking that does not contain non-linear sector of an SA, and a method of creating an optical pulse using the same diode. The laser diode includes a DFB sector serving as a reflector and a gain sector. The gain sector is connected to the DFB sector and includes an as-cleaved facet formed at the end of the gain sector. When a current less than a threshold current is applied to the DFB sector to allow the DFB sector to operate as a reflector, passive mode locking occurs swiftly and therefore a sector of the SA is not required, which makes manufacturing simple. Also, it is possible to effectively extend a frequency variable region compared to using of the SA.
Abstract:
A light source has a structure in which a 3-dB beam splitter is integrated with a Febry-Perot laser diode having a cleaved plane. A first waveguide grating and a first refractive index modifier changing a Bragg wavelength of the first waveguide grating are provided at one branch of the 3-dB beam splitter. A second waveguide grating and a second refractive index modifier changing a Bragg wavelength of the second waveguide grating are provided at another branch of the 3-dB beam splitter.
Abstract:
Provided are a photomixer module and a method of generating a terahertz wave. The photomixer module includes a semiconductor optical amplifier amplifying incident laser light and a photomixer that is excited by the amplified laser light to generate a continuous terahertz wave. The photomixer is formed as a single module together with the semiconductor optical amplifier.
Abstract:
Provided is a self-pulsating laser diode including: a distributed feedback (DFB) section serving as a reflector; a gain section connected to the DFB section and having an as-cleaved facet at one end; a phase control section interposed between the DFB section and the gain section; and an external radio frequency (RF) input portion applying an external RF signal to at least one of the DFB section and the gain section.
Abstract:
A full 3R (re-timing, re-shaping, re-amplifying) recovery system is provided. In the full 3R recovery system, a self-pulsating laser diode (SP-LD) and an electroabsorption modulator (EAM) are integrated and disposed on a semiconductor substrate.
Abstract:
Provided is a signal processor for converting a signal that converts a return to zero (RZ) signal into a non-return to zero (NRZ) signal, in which two 2R (re-amplifying, re-shaping) regenerators are connected in parallel between an input waveguide and an output waveguide with different lengths from each other. The 2R regenerator includes: two semiconductor optical amplifiers having different lengths from each other; and phase control means connected to a short semiconductor optical amplifier. The RZ signal input by a length difference of the waveguide is delayed by a time difference of a half of one bit so that the 2R regenerated NRZ signal can be obtained.
Abstract:
Provided is a signal regenerator for correcting distortion of an optical signal transmitted via an optical fiber in an optical communication system, which includes semiconductor optical amplifiers having different lengths from each other, an asymmetric Mach-Zehnder interferometer that performs 2R (re-amplifying, re-shaping) regeneration, and a delay interferometer with optical waveguides having different lengths from each other, whereby the fabrication is easy and a high-speed signal regeneration is enable.
Abstract:
The 3R regeneration system for a retiming, reshaping, and reamplifying an optical signal includes: first and second input ports in which a connected optical signal is input; an interferometer including first and second branches formed on a substrate, split at a common input node, combined at a common output node, semiconductor optical amplifiers in each of the first and second branches, the first branch being connected to the first input port, and the common input node being connected to the second input port; a self-pulsating laser diode monolithically integrated with the interferometer between one of the first input port and the first branch, and the second input port and the common input node on the substrate, receiving an optical signal, and outputting the optical signal regenerated by optical injection locking; and an output port connected to the common output node.