摘要:
Provided is a self-pulsating laser diode including: a distributed feedback (DFB) section serving as a reflector; a gain section connected to the DFB section and having an as-cleaved facet at one end; a phase control section interposed between the DFB section and the gain section; and an external radio frequency (RF) input portion applying an external RF signal to at least one of the DFB section and the gain section.
摘要:
Provided is an apparatus and method for simultaneous optical wavelength conversion and optical clock signal extraction using semiconductor optical amplifiers (SOAs). The apparatus includes: a wavelength converter receiving a pump beam having input information and a probe beam having a different wavelength from the pump beam, and outputting the pump beam with an overshoot shifted to a red wavelength and an undershoot shifted to a blue wavelength due to non-linear characteristics and self-phase modulation of semiconductor optical amplifiers (SOAs) and the probe beam delivered the input information from the pump beam; an optical divider dividing output paths of the probe beam to which the input information has been delivered and the pump beam having the overshoot and the undershoot; a converted-wavelength extractor filtering the probe beam received from the optical divider; and a clock data regenerator obtaining a pseudo return-to-zero (PRZ) signal from the pump beam received from the optical divider and extracting a clock signal from the PRZ signal.The apparatus and method can simultaneously perform wavelength conversion and optical clock signal extraction on an NRZ signal using an optical method, without converting the NRZ signal into an electrical signal.
摘要:
Provided is a self-pulsating laser diode including: a distributed feedback (DFB) section serving as a reflector; a gain section connected to the DFB section and having an as-cleaved facet at one end; a phase control section interposed between the DFB section and the gain section; and an external radio frequency (RF) input portion applying an external RF signal to at least one of the DFB section and the gain section.
摘要:
A full 3R (re-timing, re-shaping, re-amplifying) recovery system is provided. In the full 3R recovery system, a self-pulsating laser diode (SP-LD) and an electroabsorption modulator (EAM) are integrated and disposed on a semiconductor substrate.
摘要:
The present invention relates to a method of manufacturing a semiconductor optical device. The present invention discloses a method of manufacturing an optical device of a planar buried heterostructure (PBH) type by which an active layer region of a taper shape at both ends is patterned, an undoped InP layer is selectively grown in order to reduce the propagation loss and two waveguides are simultaneously formed by means of a self-aligned method, thus simplifying the process to increase repeatability and yield.
摘要:
The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
摘要:
An electroabsorption (EA) duplexer in which an optical amplifier, a photodetector, and an optical modulator are monolithically integrated to obtain a high radio frequency (RF) gain in radio-over fiber (RoF) link optical transmission technology is provided. The EA duplexer includes a substrate, a separation area, an optical detection/modulation unit, and an optical amplification unit. The separation area includes a first epitaxial layer formed of at least one material layer on the substrate. The first epitaxial layer functions as a first optical waveguide. The optical detection/modulation unit includes a second epitaxial layer formed of at least one material layer on the first epitaxial layer to detect and modulate an optical signal. The second epitaxial layer functions as a second optical waveguide. The optical amplification unit includes the second optical waveguide and a third epitaxial layer formed of at least one material layer on the second epitaxial layer to amplify an optical signal. The third epitaxial layer functions as a third optical waveguide. The optical amplification unit is electrically separated from the optical detection/modulation unit by the separation area and is disposed on at least one side of the optical detection/modulation unit.
摘要:
Provided is a method of fabricating a semiconductor optical device for use in a subscriber or a wavelength division multiplexing (WDM) optical communication system, in which a laser diode (LD) and a semiconductor optical amplifier (SOA) are integrated in a single active layer. The laser diode (LD) and the semiconductor optical amplifier (SOA) are optically connected to each other, and electrically insulated from each other by ion injection, whereby light generated from the LD is amplified by the SOA to provide low oscillation start current and high intensity of output light when current is individually injected through each electrode.
摘要:
Provided are semiconductor devices and methods of manufacturing the same. The semiconductor device includes a substrate including a first top surface, a second top surface lower in level than the first top surface, and a first perpendicular surface disposed between the first and second top surfaces, a first source/drain region formed under the first top surface, a first nanowire extended from the first perpendicular surface in one direction and being spaced apart from the second top surface, a second nanowire extended from a side surface of the first nanowire in the one direction, being spaced apart from the second top surface, and including a second source/drain region, a gate electrode on the first nanowire, and a dielectric layer between the first nanowire and the gate electrode.
摘要:
A method of fabricating quantum wire structures and devices, and quantum dot structures and devices comprise steps of: depositing an insulating layer on a semiconductor substrate, forming a line patterns and a square patterns in an insulating layer, forming a V-grooved patterned structures and a reverse quadrilateral pyramid patterned structures by thermal etching to evaporate portions of the quantum well layer that are not protected by line-shaped mask regions and square-shaped mask regions of the masking layer, forming a quantum wires and a quantum dots by alternatively growing a barrier layer and an active layer on a V-grooved patterned substrate and a reverse quadrilateral pyramid patterned substrate.