摘要:
A Schottky diode optimizes the on state resistance, the reverse leakage current, and the reverse breakdown voltage of the Schottky diode by forming an insulated control gate over a region that lies between the metal-silicon junction of the Schottky diode and the n+ cathode contact of the Schottky diode.
摘要:
Methods of forming transistors and transistors are disclosed, such as a transistor having a gate dielectric over a semiconductor having a first conductivity type, a control gate over the gate dielectric, source and drain regions having a second conductivity type in the semiconductor having the first conductivity type, and strips having the second conductivity type within the semiconductor having the first conductivity type and interposed between the control gate and at least one of the source and drain regions.
摘要:
The collector resistance of a bipolar junction transistor that is formed in a CMOS process is substantially reduced by forming a heavily-doped collector extension region that extends from a heavily-doped collector contact region down to a deep well of the same conductivity type to a point that lies close to the base of the transistor.
摘要:
Methods of forming transistors and transistors are disclosed, such as a transistor having a gate dielectric over a semiconductor having a first conductivity type, a control gate over the gate dielectric, source and drain regions having a second conductivity type in the semiconductor having the first conductivity type, and strips having the second conductivity type within the semiconductor having the first conductivity type and interposed between the control gate and at least one of the source and drain regions.
摘要:
NPN and PNP bipolar junction transistors are formed in a semiconductor substrate material in a double polysilicon CMOS process flow in a manner that allows the collectors of both of the npn and pnp bipolar transistors to be biased differently than the bias that is placed on the semiconductor substrate material.
摘要:
A Schottky diode optimizes the on state resistance, the reverse leakage current, and the reverse breakdown voltage of the Schottky diode by forming an insulated control gate over a region that lies between the metal-silicon junction of the Schottky diode and the n+ cathode contact of the Schottky diode.
摘要:
A Schottky diode optimizes the on state resistance, the reverse leakage current, and the reverse breakdown voltage of the Schottky diode by forming an insulated control gate over a region that lies between the metal-silicon junction of the Schottky diode and the n+ cathode contact of the Schottky diode.
摘要:
A method for forming a thin film, electrically blowable fuse with reproducible blowing wattage using a sacrificial metal patch over a fuse dielectric layer and two etch processes; wherein the first etch process is selective to the metal patch and the second etch process is selective to the fuse dielectric layer. A fuse element, having an element width, is formed over a semiconductor structure, and a fuse dielectric layer is formed over the fuse element. A sacrificial metal patch is formed on the fuse dielectric layer; wherein the patch width being greater than the fuse element width. A second dielectric layer is formed on the sacrificial metal patch, and additional metal layers and dielectric layers may be formed over the second dielectric layer, but only the dielectric layers will remain over the fuse element. The second dielectric layer and any overlying dielectric layers are patterned to form a fuse window opening, having a width greater than the sacrificial metal patch, using a first fuse window etch selective to the sacrificial metal patch. Then, the sacrificial metal patch is etched through the fuse window opening using a second fuse window etch selective to the fuse dielectric layer, leaving a reproducible thickness of the fuse dielectric layer overlying the fuse element; thereby providing a reproducible blowing wattage.
摘要:
A Schottky diode optimizes the on state resistance, the reverse leakage current, and the reverse breakdown voltage of the Schottky diode by forming an insulated control gate over a region that lies between the metal-silicon junction of the Schottky diode and the n+ cathode contact of the Schottky diode.
摘要:
In accordance with an aspect of the invention, A Schottky junction field effect transistor (JFET) is created using cobalt silicide, or other Schottky material, to form the gate contact of the JFET. The structural concepts can also be applied to a standard JFET that uses N− type or P− type dopants to form the gate of the JFET. In addition, the structures allow for an improved JFET linkup with buried linkup contacts allowing improved noise and reliability performance for both conventional diffusion (N− and P− channel) JFET structures and for Schottky JFET structures. In accordance with another aspect of the invention, the gate poly, as found in a standard CMOS or BiCMOS process flow, is used to perform the linkup between the source and the junction gate and/or between the drain and the junction gate of a junction filed effect transistor (JFET). Use of a bias on the gate linkup of the JFET allows an additional tuning knob for the JFET that can be optimized to trade off breakdown characteristics with reduced on resistance. In accordance with yet another aspect of the invention, a patterned buried layer is used to form the back gate control for a junction field effect transistor (JFET). The structure allows a layout or buried layer pattern change to adjust the pinch-off voltage of the JFET structure. Vertical and lateral diffusion of the buried layer is used to adjust the JFET operating parameters with a simple change in the buried layer patterns. In addition, the structures allow for increased breakdown voltage by leveraging charge sharing concepts and improving channel confinement for power JFET structures. These concepts can also be applied to both N− channel and P− channel diffusion JFETs and to Schottky JFET structures.