Abstract:
An apparatus that can be connected to a conventional sprayer bottle that permits the sprayer bottle to generate ozonated water to be used as a cleaning fluid. The apparatus includes an ozonator element coupled at one end of an electrical cable and an electrical connector coupled at the other end of the electrical cable. An aperture is formed in the sidewall of the bottle and the ozonator element, electrical cable and connector are passed through a top opening in the bottle portion. The electrical connector is then releasably secured within the aperture with the ozonator element being submerged in the water contained within the bottle. The dip tube of the spray head is then passed through the top opening and into the water in the bottle and the spray head is secured onto the bottle. Electrical energy is provided through the connector to the ozonator element to ozonate the water in the bottle for predetermined period of time after which the sprayer bottle contains ozonated water for cleaning. After another predetermined period of time, the ozonator element is energized again to ensure ozonated water is always available. A related apparatus can be connected between a feedpipe and a water reservoir for making the reservoir an ozonating water source.
Abstract:
Electrolyzed water spraying device (1000) of the present disclosure includes water storage tank (100), electrolysis tank (200), first feeder (128), electrode part (210), humidification tank (300), second feeder (138), third feeder (228), sprayer (310), and controller (500). In a water shortage state in which water is insufficient in electrolysis tank (200), when water and electrolysis accelerator are fed to electrolysis tank (200), controller (500) executes initial processing of generating electrolyzed water having a second concentration lower than a first concentration and feeding the electrolyzed water having the second concentration to humidification tank (300) by third feeder (228), and executes, after the initial processing, normal processing of generating electrolyzed water having the first concentration and feeding the electrolyzed water having the first concentration to humidification tank (300) by third feeder (228).
Abstract:
The present invention relates to systems and methods for cleaning materials, such as flooring and upholstery. In some cases, the systems and methods use an electrolytic cell to electrolyze a solution comprising sodium carbonate, sodium bicarbonate, sodium acetate, sodium percarbonate, potassium carbonate, potassium bicarbonate, and/or any other suitable chemical to generate electrolyzed alkaline water and/or electrolyzed oxidizing water. In some cases, the cell comprises a recirculation loop that recirculates anolyte through an anode compartment of the cell. In some cases, the cell further comprises a senor and a processor, where the processor is configured to automatically change an operation of the cell, based on a reading from the sensor. In some cases, a fluid flows past a magnet before entering the cell. In some additional cases, fluid from the cell is conditioned by being split into multiple conduits that run in proximity to each other. Additional implementations are described.
Abstract:
An electrochemical reactor for removing mining constituents from a fluid is disclosed. The electrochemical reactor includes a housing defining a flow path and a pump configured to continuously move fluid through the flow path at a flow rate. The electrochemical reactor also includes a power supply coupled to the housing, an anode and a cathode coupled to the power supply, and a controller configured to selectively engage the power supply power supply. The power supply applies an electrical potential between the anode and the cathode when engaged.
Abstract:
A system (10) for generating a chlorine-containing compound includes an anodic chamber (12), a cathodic chamber (20), and a brine chamber (30). The anodic chamber (12) includes an anodic electrode (14) and the cathodic chamber (20) includes a cathodic electrode (22). A membrane (28) separates the anodic and cathodic chambers (12), (20). The brine chamber (30) includes an anodic electrode (32) and a cathodic electrode (34). Concentration and type of the chlorine-containing compound can be selectively and consistently controlled by the system (10) in real time.
Abstract:
The present invention relates to an integral system for treating the water for cooling towers and other processes such as reverse osmosis rejection, regeneration of the anionic units of demineralization systems, aircraft blue water and wastewater, in which it is desired to reduce and/or eliminate contaminants such as silica, total, of calcium and magnesium hardness, suspended solids, organic matter and microorganisms, heavy metals, detergents or arsenic, for obtaining a water quality that enables it to be reused in different industrial processes, generating savings in terms of water and chemicals. The system is characterized in that the water to be treated passes through an electrochemical cell with plates of aluminum, iron or some other metal, and, when an electric current is applied at an amperage that allows an optimal current density to yield the aluminum required to form a hydroxide of aluminum, iron or some other metal, which, when reacting with the contaminants present in the water to be treated, forms an iodine that is later separated out from the water, enabling the treated water to be reused by this system, by integrating the processes of filtration and ozonation it enables better water quality to be obtained for reuse in cooling towers, industrial processes, general services, irrigation of green areas or any other use.The technological innovation in the present invention is that it totally eliminates the silica present in industrial waters, allowing reuse of this water in different processes owing to the quality obtained. In addition to reducing the calcium and magnesium hardness salt concentration, preventing the formation of encrustations and, in cooling-tower systems, making it possible to increase concentration cycles, thereby generating savings of water and chemicals, it reduces microbiological proliferation, which will enable industry in general to replace conventional industrial water-treatment programs with this new technological alternative.The advantages and benefits of the present invention are that it allows reuse and recycling of 100% of the water that has to be discarded in cooling towers, reverse osmosis rejection, regeneration of anionic units of demineralization systems and wastewater from industry, generating financial savings by allowing reuse of the water that is currently necessary to discard, thereby reducing the quantity of required chemicals essential for cooling towers and wastewater, reducing the impact on the environment caused by water being discarded with contaminants and chemicals content that makes it impossible for it to be reused. Furthermore, it allows the elimination of the contaminants present in the water from wells that contain contaminants such as arsenic, cyanide, iron, manganese and microorganisms, enabling the water to be used for drinking.
Abstract:
A system (10) for generating a chlorine-containing compound includes an anodic chamber (12), a cathodic chamber (20), and a brine chamber (30). The anodic chamber (12) includes an anodic electrode (14) and the cathodic chamber (20) includes a cathodic electrode (22). A membrane (28) separates the anodic and cathodic chambers (12), (20). The brine chamber (30) includes an anodic electrode (32) and a cathodic electrode (34). Concentration and type of the chlorine-containing compound can be selectively and consistently controlled by the system (10) in real time.
Abstract:
The water treatment system, particularly pre-filtration unit of the water treatment system, comprising at least one chlorine sensor device, is characterized in that the water treatment system contains a salt-water treatment device which is connected to the chlorine sensor device, an electrolysis cell being disposed in the associated line, and thereafter a pump and a release valve.
Abstract:
A method and an apparatus for retrofit hydrolization of seawater for production of halogen biocides in situ. A method for effecting an in situ generation of biocide as an aid in anti-biofouling of a device disposed in a volume of salt water includes a) associating a cathode electrode to the device; b) associating an anode electrode to the device with the anode electrode spaced apart from the cathode electrode; and c) hydrolyzing one or more components in the volume of salt water to generate a halogen biocide at the anode electrode with the biocide flowing from the anode electrode away from the cathode electrode as a biocide film, the film responsive to a physical arrangement of the associations of the electrodes with the device.
Abstract:
A device and process are disclosed for the separate removal of oppositely charged ions from electrolyte solutions and recombining them to form new chemical compositions. The invention provides the ability to create multiple ion flow channels and then form new chemical compositions therefrom. The process is accomplished by selectively combining oppositely charged ions of choice from different electrolyte solutions via the capacitive behavior of high electrical capacitance electrodes confined in insulated containers.