Abstract:
In each configuration, at least one TDI sensor is used to image substrate portions of interest, with those portions illuminated with substantially uniform illumination. In one configuration, a substrate is compared to prestored expected characteristic features. In a second configuration, first and second patterns in a region of the surface of at least one substrate are inspected by comparing one pattern against the other and noting whether they agree with each other. This is accomplished by illuminating the two patterns, imaging the first pattern and storing its characteristics in a temporary memory, then imaging the second pattern and comparing it to the stored characteristics from the temporary memory. Then the comparisons continue sequentially with the second pattern becoming the first pattern in the next imaging/comparison sequence against a new second pattern. Each time the comparison is performed, it is noted whether or not there has been agreement between the two patterns and which two patterns where compared. This inspection technique is useful for doing die-to-die inspections. A variation of the second configuration uses two TDI sensors to simultaneously image the first and second patterns, thus eliminating the need for temporary memory. In this configuration, the two patterns are simultaneously imaged and compared, then additional patterns are compared sequentially, in the same manner with the results of the comparisons and the pattern locations stored to determine which patterns are bad when the inspection of all patterns is completed.
Abstract:
A temperature-compensated apparatus and method for determining the percentage of solid particles in a suspension (consistency) is provided. A source of diffused radiant energy is directed toward a suspension to be measured. The portion of the energy which is forward-scattered by the suspension is detected and a first signal indicative of the magnitude of the forward-scattered energy is produced. The portion of energy which is back-scattered by the suspension is detected and a second signal indicative of the magnitude of back-scattered energy is produced. The first and second signals are combined at a predetermined ratio to produce a feedback signal used to control the intensity of energy emitted from the radiant energy source. The intensity of energy emitted from the source is a function of the forward-scattered and back-scattered energy and is directly proportional to the consistency of the suspension being measured. By monitoring the power driving the radiant energy source, a display calibrated in terms of percent consistency can be provided. The apparatus includes temperature compensation so that the temperature of the suspension will not produce erroneous readings in the energy detectors. Likewise, variations in ambient temperature will not adversely affect the operation of the energy detectors.
Abstract:
The present invention relates to a scattering light source photometer. In particular, the present invention relates to a portable, low cost, multi-wavelength photometer and methods for its use.
Abstract:
The present invention provides an apparatus for measurement of Raman scattered radiation comprising. The apparatus comprises at least one source of electromagnetic radiation for producing an electromagnetic radiation beam characterized by a narrow spectral width, an integrating cavity having an interior and an exterior, wherein a sample is placed in said interior. The integrating cavity further having at least one port for insertion of the sample in the interior and for transmission of the electromagnetic radiation into and out from the interior, the at least one port extending from the exterior to said interior of said integrating cavity. The integrating cavity also comprises a first optical element for transmitting the electromagnetic radiation into the interior of the integrating cavity through the at least one port, and a second optical element for collecting Raman scattered electromagnetic radiation from the sample through the at least one port. The apparatus also comprises a spectrum analyzer for determining spectral composition of the Raman scattered electromagnetic radiation, a detector for measuring the Raman scattered electromagnetic radiation; and a system for determining concentration of at least one chemical compound from the measured Raman scattered electromagnetic radiation. The apparatus may also comprise a radiation expanding element. A method for measuring the concentration of one or more chemical compounds in a sample using Raman scattering is also provided.
Abstract:
A device for measuring optical transmissivity of a transparency is described which comprises a diffuse light source (Lambertian diffuser) of controllable substantially constant luminance and preselected light emitting surface area for placement near a first side of a transparency for transmitting diffuse light along an optical axis through the transparency, a housing having a wall defining an aperture for placement near the second side of the transparency opposite the diffuse light source, and a detector in the form of a photo diode, cadmium sulfide cell or the like disposed within the housing and coaxial with and spaced a preselected distance from the aperture, the aperture being selected in size to expose all of the effective light detection surface area of said detector to the light emitting surface area of the diffuse light source.
Abstract:
A microtiter plate reader is disclosed which allows visual examination of the contents of the wells of a microtiter plate having an array of wells. The microtiter plate reader includes supporting means for supporting the microtiter plate with the wells opening generally upwardly and a light emitting surface is adapted to extend under a microtiter plate so held. Regions of reduced light emission on the light emitting surface are arranged in an array corresponding in relative position to a selected portion of the array of microtiter plate wells. Locator means are provided for locating the microtiter plate with respect to the array of regions of reduced light emission to allow selective alignment of the wells with the dark regions, providing a dark background to the bottom of the wells which are then illuminated indirectly. The wells can be illuminated directly when the dark regions are out of alignment with the wells.
Abstract:
A system for testing a fire suppression agent comprises an enclosed volume configured to receive an amount of the fire suppression agent therein, and at least one burner assembly positioned within the enclosed volume. The at least one burner assembly comprises a burner configured to produce a flame, the burner comprising a premixing section, a fuel source in communication with the burner, an ignition source, and a first sensor for measuring a first flame characteristic.
Abstract:
An illumination system, an inspection tool and a method for inspecting an object are disclosed. A configurable area light source is arranged in an illumination optical axis of an illumination beam path, wherein the configurable area light source is configured such that different beam diameters are settable. At least one illumination lens is positioned in the illumination beam path for directing a collimated beam at least onto a field of view on a surface of the object, wherein a value of an angle of incidence of the illumination optical axis of the illumination beam path equals a value of an angle of reflectance of the imaging optical axis of the imaging beam path. The invention allows the combination of the functionality of a wide angle coaxial illumination and a collimated coaxial illumination in one illumination system.
Abstract:
A device (1) for inspecting objects with a substantially spherical surface, such as for example eggs or fruit, comprises optical observation means (8) for observing the objects. The device has a supporting surface (10) for supporting the objects. There is a light source for illuminating the objects. The device also comprises a box (2) with reflective walls (3a, 4b and 4a shown) which is positioned above the supporting surface (11). The light source and the observation means (8) are accommodated in the box (2). A plurality of objects can be placed next to one another on the supporting surface (10) and can be illuminated equally well.
Abstract:
A method and apparatus (2) for inspecting the surface quality of automotive parts (38) having smooth surfaces (44) utilizes a light source (4) and diffusing surface (6) contained in an opaque enclosure (8). The diffusing surface has a convex shape and is arranged relative to the light source to direct a gradient of light through the aperture (10) in the form of a beam. An object to be inspected is placed in the beam at a low angle relative to the inspection apparatus. All extraneous light is controlled and the beam is reflected off the object to an observer. The gradient in the reflective beam exposes any defects on the surface that are located on the beam and the location of the defects is noted. The inspection system and method can be used to inspect objects having surfaces that range from being highly reflective to lowly reflective. The curvature and location of the diffusing surface within the enclousre is adjustable. The size and location of the aperture is also adjustable. The apparatus and method is particularly suited to inspect body parts in the automotive industry. No pretreatment of the parts is required. The system can be used in a production line with the parts mounted on a conveyor system (40). The observer cab be the human eye (48) or a camera (46) or series of cameras. The system is readily adaptable to observation by machine vision.