Abstract:
A memory system architecture is provided in which a memory controller controls memory devices in a serial interconnection configuration. The memory controller has an output port for sending memory commands and an input port for receiving memory responses for those memory commands requisitioning such responses. Each memory device includes a memory, such as, for example, NAND-type flash memory, NOR-type flash memory, random access memory and static random access memory. Each memory command is specific to the memory type of a target memory device. A data path for the memory commands and the memory responses is provided by the interconnection. A given memory command traverses memory devices in order to reach its intended memory device of the serial interconnection configuration. Upon its receipt, the intended memory device executes the given memory command and, if appropriate, sends a memory response to a next memory device. The memory response is transferred to the memory controller.
Abstract:
A calculating apparatus, or system, having a plurality of stages, such as in a pipeline arrangement, has the clocking rail or conductor positioned alongside the stages. With a large number, i.e., hundreds, of stages arranged in parallel sub-arrays, the clocking conductor is snaked alongside the sub-arrays. In individual stages it is arranged that the shortest of the two calculations taking place in a stage, takes place in the return path. An array can be divided into separate sections for independent processing.
Abstract:
A composite memory device including discrete memory devices and a bridge device for controlling the discrete memory devices in response to global memory control signals having a format or protocol that is incompatible with the memory devices. The discrete memory devices can be commercial off-the-shelf memory devices or custom memory devices which respond to native, or local memory control signals. The global and local memory control signals include commands and command signals each having different formats. The composite memory device includes a system in package including the semiconductor dies of the discrete memory devices and the bridge device, or can include a printed circuit board having packaged discrete memory devices and a packaged bridge device mounted thereto.
Abstract:
The present invention concerns a laser apparatus (200) comprising an external cavity laser (ECL) in which the optical signal is modulated by an electrical modulation signal with the purpose of modulating in frequency the laser output signal. The modulation in frequency produces in turn a modulation of intensity (power) of the laser output signal, also denoted amplitude modulation (AM). A method is described of control of the AM amplitude of a signal emitted by an ECL that comprises a gain medium (205), a phase element (206) with variable transmissivity induced by the modulation and a spectrally selective optical filter (209) and that selects and keeps the AM amplitude below a certain desired value or minimizes such value. A control method and a laser apparatus (200) are also described in which the reduction of the AM component of the output power is achieved by acting on the gain of the gain medium of the ECL in such way that the variation of transmissivity caused by the modulation applied to a phase element (206) is at least partially compensated by a corresponding variation of the gain current of the gain medium so as to reduce or to minimize the variation of the loop gain of the laser cavity induced by the modulation.
Abstract:
A clock mode configuration circuit for a memory device is described. A memory system includes any number of memory devices serially connected to each other, where each memory device receives a clock signal. The clock signal can be provided either in parallel to all the memory devices or serially from memory device to memory device through a common clock input. The clock mode configuration circuit in each memory device is set to a parallel mode for receiving the parallel clock signal, and to a serial mode for receiving a source synchronous clock signal from a prior memory device. Depending on the set operating mode, the data input circuits will be configured for the corresponding data signal format, and the corresponding clock input circuits will be either enabled or disabled. The parallel mode and the serial mode is set by sensing a voltage level of a reference voltage provided to each memory device.
Abstract:
A NAND flash memory bank having a plurality of bitlines of a memory array connected to a page buffer, where NAND cell strings connected to the same bitline are formed in at least two well sectors. At least one well sector can be selectively coupled to an erase voltage during an erase operation, such that unselected well sectors are inhibited from receiving the erase voltage. When the area of the well sectors decrease, a corresponding decrease in the capacitance of each well sector results. Accordingly, higher speed erasing of the NAND flash memory cells relative to a single well memory bank is obtained when the charge pump circuit drive capacity remains unchanged. Alternately, a constant erase speed corresponding to a single well memory bank is obtained by matching a well segment having a specific area to a charge pump with reduced drive capacity. A reduced drive capacity charge pump will occupy less semiconductor chip area, thereby reducing cost.
Abstract:
A delay compensation circuit for a delay locked loop which includes a main delay line having a fine delay line comprising fine delay elements and a coarse delay line comprising coarse delay elements, the main delay line being controlled by a controller, the delay compensation circuit comprising: an adjustable fine delay for modeling a coarse delay element, a counter for controlling the adjustable fine delay to a value which is substantially the same as that of a coarse delay element, a circuit for applying a representation of the system clock to the delay compensation circuit, and a circuit for applying the fine delay count from the counter to the controller for adjusting the fine delay line of the main delay line to a value which is substantially the same as that of a coarse delay element of the main delay line.
Abstract:
An apparatus and method of page program operation is provided. When performing a page program operation with a selected memory device, a memory controller loads the data into the page buffer of one selected memory device and also into the page buffer of another selected memory device in order to store a back-up copy of the data. In the event that the data is not successfully programmed into the memory cells of the one selected memory device, then the memory controller recovers the data from the page buffer of the other memory device. Since a copy of the data is stored in the page buffer of the other memory device, the memory controller does not need to locally store the data in its data storage elements.
Abstract:
A delay compensation circuit for a delay locked loop which includes a main delay line having a fine delay line comprising fine delay elements and a coarse delay line comprising coarse delay elements, the main delay line being controlled by a controller, the delay compensation circuit comprising: an adjustable fine delay for modeling a coarse delay element, a counter for controlling the adjustable fine delay to a value which is substantially the same as that of a coarse delay element, a circuit for applying a representation of the system clock to the delay compensation circuit, and a circuit for applying the fine delay count from the counter to the controller for adjusting the fine delay line of the main delay line to a value which is substantially the same as that of a coarse delay element of the main delay line.
Abstract:
A plurality of memory devices of mixed type (e.g., DRAMs, SRAMs, MRAMs, and NAND-, NOR- and AND-type Flash memories) is serially interconnected. Each device has device type information on its device type. A specific device type (DT) and a device identifier (ID) contained in a serial input (SI) as a packet are fed to one device of the serial interconnection. The device determines whether the fed DT matches the DT of the device. In a case of match, a calculator included in the device performs calculation to generate an ID accompanying the fed DT for another device and the fed ID is latched in a register of the device. In a case of no match, the ID generation is skipped and no ID is generated for another device. The DT is combined with the generated or the received ID depending on the device type match determination. The combined DT and ID is as a packet transferred to a next device. Such a device type match determination and ID generation or skip are performed in all devices of the serial interconnection. With reference to device type provided to the interconnected devices, IDs are sequentially generated. The SI containing the DT, the ID and an ID generation command is transmitted in a packet basis to a next device. A memory controller can recognize the total number of one DT, in response to the ID received from the last device. In a case of a “don't care” DT is provided to the interconnected devices, IDs are sequentially generated and the total number of the interconnected devices is recognized, regardless of the differences in DTs of the devices.