Abstract:
There is the operation device for an engine. An operation device for an engine performs a throttle operation of the engine which is disposed apart from an operation unit operated by an operator. The operation device includes: a link member rotatable with respect to a base in response to an operation of the operation unit; a cam member fixed to the base, and disposed at a distance from the center of rotation of the link member, the distance changing continuously according to the angular position of the cam member around the center of rotation; a cam follower connected to the link member and configured to along the cam member; and a throttle drive member for connecting the cam follower to a throttle operation unit of the engine.
Abstract:
The present invention provides an electronic component which is capable of effectively suppressing the characteristic deterioration of the passive element portion. An electronic component comprises a ceramic substrate, a passive element portion on the substrate, an insulator layer which is provided over the passive element portion and comprises a through-hole, a lead terminal which is fitted in the through-hole of the insulator layer and electrically connected to the passive element portion, and an external connection terminal which is electrically connected to the lead terminal. The insulator layer comprises a first face on the side of the passive element portion, a second face on the side opposite the passive element portion, and a third face which connects the first face and the second face and constitutes the peripheral face of the insulator layer, the external connection terminal is in contact with the lead terminal and the second face and the third face of the insulator layer. In a cross-section of the through-hole in a thickness direction of the substrate, a boundary line between the internal surface of the through-hole and the lead terminal is inclined in a direction moving away from a region of the third face with which the external connection terminal is in contact with an end of the boundary line on the side of the first face being taken as a fixed point.
Abstract:
The invention provides an electronic component which has an improved breakdown limit value of withstand voltage and improved insulation properties and which can be made compact and provided with a multiplicity of layers and a great capacity. The electronic component includes a first conductor having a bottom conductor formed on a substrate and a raised conductor formed to protrude from the bottom conductor, a dielectric film formed on the raised conductor, and a second conductor formed on the dielectric film to constitute a capacitor element in combination with the raised conductor and the dielectric film.
Abstract:
A method of manufacturing a semiconductor device includes measuring the reflectance at the surface of a semiconductor substrate provided with concave portions and deciding a deposition parameter that represents a deposition condition corresponding to the measured reflectance. Then, a metal film is formed on the semiconductor substrate under a condition corresponding to the deposition parameter.
Abstract:
A semiconductor device includes a first copper-containing conductive film formed on a substrate, insulating films formed on the first copper-containing conductive film with a concave portion reaching the first copper-containing conductive film, a second barrier insulating film formed to cover the side wall of the concave portion of these insulating films, a second adhesive alloy film made of copper and a dissimilar element other than copper, and coming in contact with the first copper-containing conductive film at the bottom surface of the concave portion and in contact with the second barrier insulating film at the side wall of the concave portion to cover the inside wall of the concave portion, and a second copper-containing conductive film containing copper as a main component, and formed on the second adhesive alloy film in contact with the second adhesive alloy film to fill the concave portion.
Abstract:
An electronic component having: a substrate, a lower conductor layer provided on the substrate; an inorganic dielectric film that covers the lower conductor layer; and an upper conductor layer having an upper electrode portion provided on the inorganic dielectric film. The lower conductor layer has a lower electrode portion that together with the upper electrode portion and the inorganic dielectric film constitutes a capacitor, and a coil portion that constitutes an inductor. The entire inorganic dielectric film is formed integrally, and the lower conductor layer is in contact only with the substrate, inorganic dielectric film, and upper conductor layer.
Abstract:
In a method for manufacturing a semiconductor device, insulation resistance of the porous film is stabilized, and leakage current between adjacent interconnects provides an improved reliability in signal propagation therethrough. The method includes: sequentially forming over a semiconductor substrate a porous film and a patterned resist film; forming a concave exposed surface of the substrate; forming a non-porous film covering the interior wall of the concave portion and the porous film; selectively removing the non-porous film from the bottom of the concave portion and the non-porous film by anisotropic etch; forming a barrier metal film covering the porous film and the interior wall; and forming a metallic film on the barrier metal film to fill the concave portion. The anisotropic etch process uses an etching gas with mixing ratio MR, 45≦MR≦100, where MR=((gaseous “nitrogen” containing compound)+(inert gas))/(gaseous “fluorine” containing compound).
Abstract:
The invention relates to an electronic component including a capacitor and provides an electronic component in which electromigration can be prevented and whose capacitor element has an accurate capacity value. The electronic component includes a bottom conductor formed on a substrate, a dielectric film formed to cover the bottom conductor, an organic insulation film formed on the dielectric film, and a top conductor formed in an opening provided in the organic insulation film over the bottom conductor, the top conductor forming a capacitor element in combination with the bottom conductor and the dielectric film.
Abstract:
A thin-film device comprises a substrate and a capacitor provided on the substrate. The capacitor incorporates: a lower conductor layer; a dielectric film a portion of which is disposed on the lower conductor layer; and an upper conductor layer disposed on the dielectric film. The lower conductor layer has a top surface, a side surface, and a corner portion formed by the top and side surfaces. The upper conductor layer incorporates an upper electrode portion having a bottom surface opposed to the top surface of the lower conductor layer with the dielectric film disposed in between. When seen from above the upper conductor layer, the periphery of the bottom surface of the upper electrode portion is located inside the periphery of the top surface of the lower conductor layer without touching the periphery of the top surface of the lower conductor layer.
Abstract:
A thin-film device comprises: a substrate; a flattening film made of an insulating material and disposed on the substrate; and a capacitor provided on the flattening film. The capacitor incorporates: a lower conductor layer disposed on the flattening film; a dielectric film disposed on the lower conductor layer; and an upper conductor layer disposed on the dielectric film. The thickness of the dielectric film falls within a range of 0.02 to 1 μm inclusive and is smaller than the thickness of the lower conductor layer. The surface roughness in maximum height of the top surface of the flattening film is smaller than that of the top surface of the substrate and equal to or smaller than the thickness of the dielectric film. The surface roughness in maximum height of the top surface of the lower conductor layer is equal to or smaller than the thickness of the dielectric film.