摘要:
A semiconductor device includes a semiconductor layer of a first conductivity type and a first doping concentration. A first semiconductor region, used as drain, of the first conductivity type has a lower doping concentration than the semiconductor layer and is over the semiconductor layer. A gate dielectric is over the first semiconductor region. A gate electrode over the gate dielectric has a metal-containing center portion and first and second silicon portions on opposite sides of the center portion. A second semiconductor region, used as a channel, of the second conductivity type has a first portion under the first silicon portion and the gate dielectric. A third semiconductor region, used as a source, of the first conductivity type is laterally adjacent to the first portion of the second semiconductor region. The metal-containing center portion, replacing silicon, increases the source to drain breakdown voltage.
摘要:
In one embodiment, the invention provides substrates that are structured so that devices fabricated in a top layer thereof have properties similar to the same devices fabricated in a standard high resistivity substrate. Substrates of the invention include a support having a standard resistivity, a semiconductor layer arranged on the support substrate having a high-resistivity, preferably greater than about 1000 Ohms-cm, an insulating layer arranged on the high-resistivity layer, and a top layer arranged on the insulating layer. The invention also provides methods for manufacturing such substrates.
摘要:
A semiconductor fabrication process includes forming isolation structures on either side of a transistor region, forming a gate structure overlying the transistor region, removing source/drain regions to form source/drain recesses, removing portions of the isolation structures to form recessed isolation structures, and filling the source/drain recesses with a source/drain stressor such as an epitaxially formed semiconductor. A lower surface of the source/drain recess is preferably deeper than an upper surface of the recessed isolation structure by approximately 10 to 30 nm. Filling the source/drain recesses may precede or follow forming the recessed isolation structures. An ILD stressor is then deposited over the transistor region such that the ILD stressor is adjacent to sidewalls of the source/drain structure thereby coupling the ILD stressor to the source/drain stressor. The ILD stressor is preferably compressive or tensile silicon nitride and the source/drain structure is preferably silicon germanium or silicon carbon.
摘要:
A semiconductor fabrication process includes forming an etch stop layer (ESL) overlying a buried oxide (BOX) layer and an active semiconductor layer overlying the ESL. A gate electrode is formed overlying the active semiconductor layer. Source/drain regions of the active semiconductor layer are etched to expose the ESL. Source/drain stressors are formed on the ESL where the source/drain stressors strain the transistor channel. Forming the ESL may include epitaxially growing a silicon germanium ESL having a thickness of approximately 30 nm or less. Preferably a ratio of the active semiconductor layer etch rate to the ESL etch rate exceeds 10:1. A wet etch using a solution of NH4OH:H2O heated to a temperature of approximately 75° C. may be used to etch the source/drain regions. The ESL may be silicon germanium having a first percentage of germanium. The source/drain stressors may be silicon germanium having a second percentage of germanium for P-type transistors, and they may be silicon carbon for N-type transistors.
摘要:
An electronic device can include a semiconductor fin overlying an insulating layer. The electronic device can also include a semiconductor layer overlying the semiconductor fin. The semiconductor layer can have a first portion and a second portion that are spaced-apart from each other. In one aspect, the electronic device can include a conductive member that lies between and spaced-apart from the first and second portions of the semiconductor layer. The electronic device can also include a metal-semiconductor layer overlying the semiconductor layer. In another aspect, the semiconductor layer can abut the semiconductor fin and include a dopant. In a further aspect, a process of forming the electronic device can include reacting a metal-containing layer and a semiconductor layer to form a metal-semiconductor layer. In another aspect, a process can include forming a semiconductor layer, including a dopant, abutting a wall surface of a semiconductor fin.
摘要:
A semiconductor process and apparatus provide a high performance CMOS devices (108, 109) with hybrid or dual substrates by etching a deposited oxide layer (62) using inverse slope isolation techniques to form tapered isolation regions (76) and expose underlying semiconductor layers (41, 42) in a bulk wafer structure prior to epitaxially growing the first and second substrates (84, 82) having different surface orientations that may be planarized with a single CMP process. By forming first gate electrodes (104) over a first substrate (84) that is formed by epitaxially growing (100) silicon and forming second gate electrodes (103) over a second substrate (82) that is formed by epitaxially growing (110) silicon, a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes having improved hole mobility.
摘要:
A semiconductor fabrication process includes forming a recess in a semiconductor substrate. A silicon germanium film is formed on a sidewall of the recess. A gate dielectric and gate electrode are formed adjacent the silicon germanium film. Source/drain regions are then formed wherein a first source/drain region is adjacent a first side of the gate electrode in an upper surface of the substrate and a second source/drain region adjacent a second side of the gate electrode is below a lower surface of the recess. Etching the exposed portion of the substrate may be done so as to form a rounded corner at the junction of the recess sidewall and the recess lower surface. The silicon germanium film formation is preferably epitaxial. An epitaxial silicon film may be formed adjacent the silicon germanium film.
摘要:
A semiconductor process and apparatus provide a dual or hybrid substrate by forming a second semiconductor layer (214) that is isolated from, and crystallographically rotated with respect to, an underlying first semiconductor layer (212) by a buried insulator layer (213); forming an STI region (218) in the second semiconductor layer (214) and buried insulator layer (213); exposing the first semiconductor layer (212) in a first area (219) of a STI region (218); epitaxially growing a first epitaxial semiconductor layer (220) from the exposed first semiconductor layer (212); and selectively etching the first epitaxial semiconductor layer (220) and the second semiconductor layer (214) to form CMOS FinFET channel regions (e.g, 223) and planar channel regions (e.g., 224) from the first epitaxial semiconductor layer (220) and the second semiconductor layer (214).
摘要:
A semiconductor process and apparatus provide a shallow trench isolation region (96) with a trench liner (95, 104) for use in a hybrid substrate device (21) by lining a first trench with a first trench liner (95), and then lining a second trench formed within the first trench by depositing a second trench liner (104) that is anisotropically etched to expose an underlying substrate (70) on which is epitaxially grown a silicon layer (110) to fill the second trench. By forming first gate electrodes (251) over a first SOI substrate (90) using deposited (100) silicon and forming second gate electrodes (261) over an epitaxially grown (110) silicon substrate (110), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (261) having improved hole mobility.
摘要:
An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.