Abstract:
A manufacturing method to form a memory device includes forming a hard mask on a magnetic stack. A first magnetic stack etch is performed to form exposed magnetic layers. A liner is applied to the exposed magnetic layers to form protected magnetic layers. A second magnetic stack etch forms a magnetic random access memory (MRAM) cell, where the liner prevents shunting between the protected magnetic layers.
Abstract:
The present disclosure concerns a method for writing to a self-referenced MRAM cell comprising a magnetic tunnel junction comprising: a storage layer including a first ferromagnetic layer having a first storage magnetization, a second ferromagnetic layer having a second storage magnetization, and a non-magnetic coupling layer separating the first and second ferromagnetic layers; a sense layer having a free sense magnetization; and a tunnel barrier layer included between the sense and storage layers; the first and second ferromagnetic layers being arranged such that a dipolar coupling between the storage) and the sense layers is substantially null; the method comprising: switching the second ferromagnetic magnetization by passing a spin-polarized current in the magnetic tunnel junction; wherein the spin-polarized current is polarized when passing in the sense layer, in accordance with the direction of the sense magnetization. The MRAM cell can be written with low power consumption.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
The present disclosure concerns a multilevel magnetic element comprising a first tunnel barrier layer between a soft ferromagnetic layer having a magnetization that can be freely aligned and a first hard ferromagnetic layer having a magnetization that is fixed at a first high temperature threshold and freely alignable at a first low temperature threshold. The magnetic element further comprises a second tunnel barrier layer and a second hard ferromagnetic layer having a magnetization that is fixed at a second high temperature threshold and freely alignable at a first low temperature threshold; the soft ferromagnetic layer being comprised between the first and second tunnel barrier layers. The magnetic element disclosed herein allows for writing four distinct levels using only a single current line.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
The present disclosure concerns a self-referenced magnetic random access memory-based ternary content addressable memory (MRAM-based TCAM) cell comprising a first and second magnetic tunnel junction; a first and second conducting strap adapted to pass a heating current in the first and second magnetic tunnel junction, respectively; a conductive line electrically connecting the first and second magnetic tunnel junctions in series; a first current line for passing a first field current to selectively write a first write data to the first magnetic tunnel junction; and a second current line for passing a write current to selectively write a second write data to the second magnetic tunnel junction, such that three distinct cell logic states can be written in the MRAM-based TCAM cell.
Abstract:
The present disclosure concerns a method for writing to a self-referenced MRAM cell comprising a magnetic tunnel junction comprising: a storage layer including a first ferromagnetic layer having a first storage magnetization, a second ferromagnetic layer having a second storage magnetization, and a non-magnetic coupling layer separating the first and second ferromagnetic layers; a sense layer having a free sense magnetization; and a tunnel barrier layer included between the sense and storage layers; the first and second ferromagnetic layers being arranged such that a dipolar coupling between the storage) and the sense layers is substantially null; the method comprising: switching the second ferromagnetic magnetization by passing a spin-polarized current in the magnetic tunnel junction; wherein the spin-polarized current is polarized when passing in the sense layer, in accordance with the direction of the sense magnetization. The MRAM cell can be written with low power consumption.
Abstract:
Magnetic current sensor, including: a sensor bridge circuit including a first and second half-bridges, each including two series-connected and diagonally opposed tunnel magnetoresistive (TMR) sensor elements, the TMR sensor elements including a reference layer oriented a single predetermined direction and a sense layer having a sense magnetization; a field line configured for passing a field current generating a magnetic field adapted for orienting the sense magnetization of the diagonally opposed TMR sensor elements of the first half-bridge and of the diagonally opposed TMR sensor elements of the second half-bridge in an opposite direction; such that a non-null differential voltage output between the TMR sensor elements of the first half-bridge and the TMR sensor elements of the second half-bridge is measurable when the field current is passed in the field line; the differential voltage output being insensitive to the presence of an external uniform magnetic field.
Abstract:
Magnetic element including a first ferromagnetic layer having a first magnetization including a stable magnetization vortex configuration having a vortex core. The first ferromagnetic layer includes an indentation configured such that the vortex core nucleates substantially at the indentation. Upon application of an external magnetic field in a first field direction, the vortex core moves along a first path and the first magnetization rotates around the vortex core in a counterclockwise direction. Upon application of the external magnetic field in a second field direction opposed to the first field direction, the vortex core moves along a second path and the first magnetization rotates around the vortex core in a clockwise direction. Both the first and second field path are substantially identical and move the vortex core away from the indentation.
Abstract:
Magnetic angular sensor element destined to sense an external magnetic field, including a magnetic tunnel junction containing a ferromagnetic pinned layer having a pinned magnetization, a ferromagnetic sensing layer, and a tunnel magnetoresistance barrier layer; the ferromagnetic sensing layer including a first sensing layer being in direct contact with the barrier layer and having a first sensing magnetization, a second sensing layer having a second sense magnetization, and a metallic spacer between the first sensing layer and the second sensing layer; wherein the metallic spacer is configured to provide an antiferromagnetic coupling between the first sensing magnetization and the second sensing magnetization such that the first sensing magnetization is oriented substantially antiparallel to the second sensing magnetization; the second sensing magnetization being larger than the first sensing magnetization, such that the second sensing magnetization is oriented in accordance with the direction of the external magnetic field.