Abstract:
There is provided with a plating method. At least a portion of a surface of a resin product is irradiated with ultraviolet light. An alkali processing is performed on the resin product with an alkali solution. An electroless plating catalyst is applied to the portion of the surface of the resin product which is irradiated with the ultraviolet light in the irradiating. This applying includes processing the resin product with a solution containing a palladium complex having a positive electric charge at least at a part of the palladium complex. Electroless plating is performed on the resin product.
Abstract:
A plurality of edges of sensor substrates are connected in a longitudinal direction in a sensor substrate unit. Farthest tips of sensor chips at the edges of the sensor substrates are positioned inside of farthest edges of the edges in the longitudinal direction. The edges of the connected sensor substrates overlap each other in a thickness direction of the sensor substrates in plan view.
Abstract:
An image sensor unit includes: a plurality of sensor substrates that are connected in a main-scan direction and that are provided with sensor chips in the main-scan direction, the sensor chips converting light from an original to electric signals; and a plurality of rod-lens arrays that are connected in the main-scan direction and that are provided with a plurality of rod lenses in the main-scan direction, the rod lenses focusing the light from the original on the sensor chips, wherein connection positions between the plurality of sensor substrates are arranged at positions not overlapping with connection positions between the plurality of rod-lens arrays. A decrease in reading accuracy of an image can be reduced even if short constituent members are connected in the main-scan direction to form an elongated image sensor unit.
Abstract:
A substrate member includes a substrate and a plurality of chip regions formed on the substrate across a scribe line. Each of the plurality of chip regions includes a first region that has contact with the scribe line and in which a plurality of first pattern elements are formed, and a second region that is surrounded by the first region and in which a plurality of second pattern elements are formed. A minimum value of a size of the first pattern elements is greater than a minimum value of a size of the second pattern elements and/or a minimum value of an interval between adjacent first pattern elements is greater than a minimum value of an interval between adjacent second pattern elements.
Abstract:
A flexible circuit board includes a base film formed by a metallic material, a first protective film formed on a first surface of the base film, and a circuit pattern adhered to the first protective film through an adhesive film. Projections and recesses for heat release are formed on a second surface that is a surface on the opposite side of the first surface of the base film.
Abstract:
A flexible printed circuit for mounting a light emitting element has a base film, a wiring pattern formed on a surface of the base film, and a cover film that covers the base film and the wiring pattern. At least one of the base film and the cover film has a substrate comprising a metal. The cover film has such surface properties as to produce specular reflection or diffuse reflection of light or has a substantially white reflecting film on a surface of the cover film.
Abstract:
In an image sensor unit, sensor substrates include a plurality of edges arranged on a substrate holder in a longitudinal direction at predetermined intervals, sensor chips at the edges are mounted beyond the edges, and the substrate holder includes positioning portions that position the sensor chips.
Abstract:
An image sensor unit has a first light guide that emits light to a bill, a second light guide that emits light to the bill, a rod-lens array that receives the light emitted by the first light guide and reflected by the bill and the light emitted by the second light guide and transmitted through the bill, and a background member that provides a background color for the bill. The bill can pass through the gap between the rod-lens array and the background member and second light guide. The background member is disposed on the optical axis of the rod-lens array to face the rod-lens array. The second light guide is disposed at a position shifted from the optical axis of the rod-lens array in the conveyance direction of the bill.
Abstract:
An image sensor unit includes: multiple first light guides that shape light emitted by light sources into a line and emit linear light elongated in longitudinal direction to an object to be read (P); multiple holding members that hold each of the first light guides on a frame; and an image sensor that detects light from the object to be read (P). The multiple first light guides are parallel, and in a range in which the image sensor detects the light from the object to be read (P) in the longitudinal direction of the first light guides, center positions in the main-scan direction of the multiple holding members that hold one first light guide of the multiple light guides and center positions in the main-scan direction of the multiple holding members that hold another light guide different from the one first light guide deviate from each other.
Abstract:
There is provided with an illumination device. The illumination device has a circuit board; a light source movable relative to the circuit board; a rod-like light guide that is configured to guide light from the light source and that is elongated in a longitudinal direction; and a flexible wiring configured to supply electricity from the circuit board to the light source. The light source is capable of moving in the longitudinal direction to reduce fluctuation in distance between the light source and a light receiving surface of the light guide when an end portion of the light guide in the longitudinal direction moves in the longitudinal direction.