Abstract:
A micro patch coating device includes a coating die with a micro channel structure. A coating fluid is supplied through a coating fluid inlet and an auxiliary fluid is supplied through an auxiliary fluid inlet. After a segment of a predetermined length of the coating fluid is formed at a two-phase fluid output section, the coating fluid flow is intercepted. In turn, a segment of predetermined length of the auxiliary fluid is formed at the two-phase fluid output section, and then the auxiliary fluid flow is intercepted. A two-phase fluid is formed and flows out of the coating die to the substrate to form micro patches thereon.
Abstract:
An ultrasound transducer apparatus for shaping the ultrasound coverage field per application requirement in both the radiating and receiving mode of operation. Wave coverage field is shaped by forming at least one cut at designated location on the housing wall. A cut on the housing wall of the transducer pot-shaped structural body results into the reduction of wave intensity, either radiating or receiving, toward that direction where the cut is located.
Abstract:
The present invention provides an optical head with a single or multiple sub-wavelength light beams, which can be used in arenas such as photolithography, optical storage, optical microscopy, to name a few. The present invention includes a transparent substrate, a thin film, and a surface structure with sub-wavelength surface profile. The incident light transmits through the transparent substrate, forms a surface plasma wave along the sub-wavelength aperture located within the thin film, and finally re-emits through spatial coupling with the sub-wavelength profile of the surface structure. As the coupled re-emitting light beam or light beams can maintain the waist less than that of the diffraction limit for a few micrometers out of the surface with sub-wavelength profile in many cases, this invention can have applications ranging from micro or nano manufacturing, metrology, and manipulation by using light beams with waist smaller than the diffraction limit.
Abstract:
A biomolecular sensor system utilizing a transverse propagation wave of surface plasmon resonance (SPR) is described. The system comprises: a substrate; a dielectric layer, having a groove therein and standing on top of the substrate; a sensing film layer, sitting at the groove; a pair of prism devices, each resting on one side of the groove and both separating a tunable distance. Besides, the sensor system further comprises a light source, a light detector (a frontend of which connecting to a spectrometer and a backend connecting to a differential amplifier) and a channel with a cover forming inside the groove for the acquisition of the reflected light from the prism devices. Since the sensor system is constructed by exploiting the SPR technique on the transverse propagation, a whole contact surface is under detection (parallel detection) which differentiates it from the traditional method of single-area SPR detection. The sensor system is applicable not only for the far-infrared remote sensing with a transverse distance of several centimeters, but further for the biomedical sensing applications in the miniature sizing and high throughput.
Abstract:
A microarray biochip workstation allowing positioning of chips, immobilization of molecules, mixing of sample solution, molecular interactions and washing and processing qualitative and quantitative analyses consists of a positioning device for holding a biochip, a mixing device for acting on the sample solution applied on the biochip, a pumping device for removing the sample solution from the biochip surface that does not react, and a reading device for detecting reaction results of the biochip. The workstation thus constructed provides an integrated and effective work interface.
Abstract:
A solution for fabricating a light diffusing sheet-like device capable of emitting light with superior brightness, that is a high brightness diffuser. The high brightness diffuser mainly includes at least two light diffusing pieces with ridge-shape structure arranged thereon, which can be either convex or concave. The convex ridge-shape structure having a plurality of large convex ridges and a plurality of small convex ridges, which are associated with a ridgeline existing in between two adjacent ridges where the large ridge and small are interlace-arranged, and the ridges along with the associated ridgelines can be longitudinally extended to the same direction. The concave ridge-shape structure is constituted the same way as the convex ridge-shape structure is, but having concave ridges. The high brightness diffuser is fabricated by stacking up the two light diffusing pieces and enabling an included angle to be formed between the two ridge-extending directions of the two light diffusing pieces.
Abstract:
A multi-function opto-electronic detection apparatus for detecting molecular characteristics of a test sample. The appratuses comprises functional mode subsystems including a detecting light source subsystem for generating sampling beams for illuminating the test sample; a manipulation optics subsystem for aligning the sampling beam onto the test sample; a target signal processing subsystem for analyzing target beams emerging from the test sample resulting from the illuminating of the sampling beam; and a sample fixation subsystem for holding the test sample. The detecting light source subsystem, manipulation optics subsystem and target signal processing subsystem are assembled into one of several possible optical sampling setups for the detection characteristics of the test sample. The functional mode setups include at least ellispometer, confocal image scanner, photon tunneling scanning microscope and interferometer.
Abstract:
A biological cell test method and apparatus employs a conventional perforated cell carrier which has a plurality of holes. Each hole has two metal electrodes. A cell is disposed in the hole to contact the two electrodes. The electrodes are connected to electric current or voltage. The electric current or field flows from one electrode through the cell to another electrode. Through the inherent impedance, inductance or capacitance of the cell, the presence or property reactions of the cell may be detected.
Abstract:
Augmenting surface electrodes for piezoelectric workpieces together with the method for fabrication are disclosed for improving fabrication and operation reliability of the workpieces. A piezoelectric workpiece used for energy conversion between electrical and mechanical forms in a piezoelectric system comprises a body, a number of function electrodes, and at least an augmenting surface electrode. The body of piezoelectricity is used for implementing the energy conversion. The function electrodes are each fixedly attached to the surface of the body, and are connected in the electric circuit for implementing the energy conversion. At least one of the function electrodes has a shape with a contour of at least one acute angle. At least an augmenting surface electrode has a substantially elongated shape fixedly attached to the surface of the body proximate to the acute angle. Together, the augmenting surface electrode and the proximate function electrode thereof constitute a gross electrode that substantially cancels the acute angle when both are connected electrically to the same electric potential. The acute angle is cancelled during the polarization of electric dipoles of the body grain molecules so that the boundary region between different polarization orientation distribution regions can be smoothed. The reliability of the piezoelectric workpiece is improved both during the fabrication and during normal operation of the workpiece.
Abstract:
The present invention is a wafer level integrating method for bonding an un-sliced wafer including image sensors and a wafer-sized substrate including optical components thereon. A zeroth order light reflective substrate is provided between the un-sliced wafer and the wafer-sized substrate. The image sensors are either CMOS or CCD image sensors. The wafer-sized substrate is a transparent plate and the optical components thereon include a blazed grating, a two-dimensional microlens array or other optical-functional elements. The wafer-sized substrate is bonded onto the zeroth order light reflective substrate by an appropriate optical adhesive to form a composite substrate. Bonding pads and bumps are provided at corresponding positions on the bonding surface of the un-sliced wafer and the composite substrate respectively so that the composite substrate and the un-sliced wafer can be bonded together through a reflow process. Alternatively, the composite substrate and the un-sliced wafer can be bonded together by cold compression or thermal compression. The resultant wafer is then sliced into separated image sensors for further packaging, such as CLCC, PLCC, QFP, QFN or QFJ. Alternatively, the resultant wafer can be packaged through a wafer-level chip scale packaging process.